Skip to main content
Log in

Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates and catalysis application for CO oxidation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, we report a simple, versatile, and rapid method for the synthesis of Pd nanoparticle catalysts supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates via microwave irradiation. The important advantage of microwave dielectric heating over convective heating is that the reactants can be added at room temperature (or slightly higher temperatures) without the need for high-temperature injection. Furthermore, the method can be used to synthesize metal nanoparticle catalysts supported on metal oxide nanoparticles in one step. We also demonstrate that the catalyst-support interaction plays an important role in the low temperature oxidation of CO. The current results reveal that the Pd/Co3O4 catalyst has particularly high activity for CO oxidation as a result of the strong interaction between the Pd nanoparticles and the Co3O4 nanoplates. Optimizations of the size, composition, and shape of these catalysts could provide a new family of efficient nanocatalysts for the low temperature oxidation of CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelsayed V, Saoud KM, El-Shall MS (2006) Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts. J Nanopart Res 8:519–531

    Article  Google Scholar 

  • Abdelsayed V, Panda AB; Glaspell GP, El-Shall MS (2008) Nanoparticles: synthesis, stabilization, passivation, and functionalization. In: Nagarajan R, Hatton TA (eds) ACS symposium series 996, chap 17, pp 225–247

  • Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys. Chem Mater 21:2825–2834

    Article  Google Scholar 

  • An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. J Am Chem Soc 135:16689–16696

    Article  Google Scholar 

  • Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206

    Article  Google Scholar 

  • Campbell CT, Grant AW, Starr DE, Parker SC, Bondzie VA (2000) Model oxide-supported metal catalysts: energetics, particle thicknesses, chemisorption and catalytic properties. Top Catal 14:43–51

    Article  Google Scholar 

  • Chen S, Si R, Taylor E, Janzen J, Chen J (2012) Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation. J Phys Chem A 116:12969–12976

    Google Scholar 

  • Choudhary TV, Goodman DW (2002) CO-free fuel processing for fuel cell applications. Catal Today 77:65–78

    Article  Google Scholar 

  • Ertl G (2009) Reactions at solid surfaces. Wiley, New York

    Book  Google Scholar 

  • Farmer JA, Campbell CT (2010) Ceria maintains smaller metal catalyst particles by strong metal—support bonding. Science 329:933–936

    Article  Google Scholar 

  • Freund HJ, Meijer G, Scheffler M, Schlögl R, Wolf M (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angew Chem Int Ed 50:10064–10094

    Article  Google Scholar 

  • Gao F, Goodman DW (2012) Model catalysts: simulating the complexities of heterogeneous catalysts. Annu Rev Phys Chem 63:265–286

    Article  Google Scholar 

  • Glaspell G, Fuoco L, El-Shall MS (2005) Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. J Phys Chem B 109:17350–17355

    Article  Google Scholar 

  • Glaspell G, Hassan HMA, Elzatahry A, Abdelsayed A, El-Shall MS (2008) Nanocatalysis on supported oxides for CO oxidation. Top Catal 47:22–31

    Article  Google Scholar 

  • Green IX, Tang W, Neurock M, Yates JT (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333:736–739

    Article  Google Scholar 

  • Haag W, Gates B, Knoezinger H (1999) Advances in catalysis: the surface science approach toward understanding automotive exhaust conversion catalysis at the atomic level. Academic Press, San Diego

    Google Scholar 

  • Herring NP, AbouZeid K, Mohamed MB, Pinsk J, El-Shall MS (2011) Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis. Langmuir 27:15146–15154

    Article  Google Scholar 

  • Jansson J (2000) Low-temperature CO oxidation over Co3O4/Al2O3. J Catal 194:55–60

    Article  Google Scholar 

  • Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Osterlund L, Thormahlen P, Langer VJ (2002) On the catalytic activity of Co3O4 in low-temperature CO oxidation. J Catal 211:387–397

    Article  Google Scholar 

  • Jernigan GG, Somorjai GA (1994) Carbon monoxide oxidation over three different oxidation states of copper: metallic copper, copper (I) oxide, and copper (II) oxide—a surface science and kinetic study. J Catal 147:567–577

    Article  Google Scholar 

  • Jia C-J, Schwickardi M, Weidenthaler C, Schmidt W, Korhonen S, Weckhuysen BM, Schüth F (2011) Co3O4–SiO2 nanocomposite: a very active catalyst for CO oxidation with unusual catalytic behavior. J Am Chem Soc 133:11279–11288

    Article  Google Scholar 

  • Jin M, Park J-N, Shon JK, Kim JH, Li Z, Park Y-K, Kim JM (2012) Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides. Catal Today 185:183–190

    Article  Google Scholar 

  • Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  Google Scholar 

  • Molnar A (2011) Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem Rev 111:2251–2320

    Article  Google Scholar 

  • Qiu G, Huang H, Genuino H, Opembe N, Stafford L, Dharmarathna S, Suib SL (2011) Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J Phys Chem C 115:19626–19631

    Article  Google Scholar 

  • Radwan NRE, El-Shall MS, Hassan HMA (2007) Synthesis and characterization of nanoparticle Co3O4, CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution. Appl Catal A 331:8–18

    Article  Google Scholar 

  • Rodriguez JA (2011) Gold-based catalysts for the water–gas shift reaction: active sites and reaction mechanism. Catal Today 160:3–10

    Article  Google Scholar 

  • Santra AK, Goodman DW (2003) Oxide-supported metal clusters: models for heterogeneous catalysts. J Phys Condens Matter 15:R31–R62

    Article  Google Scholar 

  • Schalow T, Laurin M, Brandt B, Schauermann S, Guimond S, Kuhlenbeck H, Starr DE, Shaikhutdinov SK, Libuda J, Freund HJ (2005) Oxygen storage at the metal/oxide interface of catalyst nanoparticles. Angew Chem Int Ed 44:7601–7605

    Article  Google Scholar 

  • Shelef M, McCabe RW (2000) Twenty-five years after introduction of automotive catalysts: what next? Catal Today 62:35–50

    Article  Google Scholar 

  • Siamaki AR, Khder AERS, Abdelsayed V, El-Shall MS, Gupton BF (2011) Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. J Catal 279:1–11

    Article  Google Scholar 

  • Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley, Hoboken

    Google Scholar 

  • Wang W-W, Zhu Y-J, Ruan M-L (2007) Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res 9:419–426

    Article  Google Scholar 

  • Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477

    Article  Google Scholar 

  • Widmann D, Behm RJ (2011) Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew Chem Int Ed 50:10241–10245

    Article  Google Scholar 

  • World Health Organization (1999) Carbon monoxide: environmental health criteria. World Health Organization, Geneva 213

    Google Scholar 

  • Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalyzed by Co3O4 nanorods. Nature 458:746–749

    Article  Google Scholar 

  • Yang Y, Saoud KM, Abdelsayed V, Glaspell G, Deevi S, El-Shall MS (2006) Vapor phase synthesis of supported Pd, Au and unsupported bimetallic nanoparticle catalysts for CO oxidation. Catal Commun 7:281–284

    Article  Google Scholar 

  • Zhou W, Yao M, Guo L, Li Y, Li J, Yang S (2009) Hydrazine-linked convergent self-assembly of sophisticated concave polyhedrons of β-Ni(OH)2 and NiO from nanoplate building blocks. J Am Chem Soc 131:2959–2964

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (CHE-0911146 and OISE-1002970) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Samy El-Shall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2014_2477_MOESM1_ESM.doc

Figure S1 (a-e): TEM images of Fe3O4 and Ni(OH)2 nanoplates, and 50 wt% Pd nanoparticles supported on Fe3O4 and Ni(OH)2 nanoplates. (DOC 66698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elazab, H.A., Moussa, S., Gupton, B.F. et al. Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates and catalysis application for CO oxidation. J Nanopart Res 16, 2477 (2014). https://doi.org/10.1007/s11051-014-2477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2477-0

Keywords

Navigation