Skip to main content
Log in

Thermochemical behavior of nano-sized aluminum-coated nickel particles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are performed to investigate the thermochemical behavior of aluminum-coated nickel particles in the size range of 4–13 nm, beyond which asymptotic behavior is observed. The atomic interactions are captured using an embedded atom model. Emphasis is placed on the particle melting behavior, diffusion characteristics, and inter-metallic reactions. Results are compared with the corresponding properties of nickel-coated nano-aluminum particles. Melting of the shell, which is a heterogeneous process beginning at the outer surface of the particle, is followed by diffusion of aluminum and nickel atoms and inter-metallic reactions. The ensuing chemical energy heats up the particle under adiabatic conditions. The alloying reactions progressively transform the core–shell structured particle into a homogeneous alloy. The melting temperature of the shell is weakly dependent on the core size, but increases significantly with increasing shell thickness, from 750 K at 1 nm to 1,000 K at 3 nm. The core melts at a temperature comparable to the melting point of a nascent particle, contrary to the phenomenon of superheating observed for nickel-coated aluminum particles. The melting temperature of the core decreases from 1,730 to 1,500 K, when its diameter decreases from 10 to 7 nm. For smaller cores, the majority of nickel atoms participate in reactions before melting. The diffusion coefficient of nickel atoms in aluminum shell exhibits a temperature dependence of the form D = D 0 exp(−E A/RT), with an activation energy of 43.65 kJ/mol and a pre-exponential factor of 1.77 × 10−7 m2/s. The adiabatic reaction temperature, also a size-dependent quantity, increases with increasing core diameter, attains a maximum value of 2,050 K at 5 nm, and decreases with further increase in the core diameter. The calculated values agree reasonably with those obtained via chemical equilibrium analysis. The burning time exhibits strong dependence of particle core size and shell thickness of the form τ b = a d nc δ ms , where the exponents n and m are 1.70 and 1.38, respectively. The finding further corroborates the fact that the reaction rate is controlled by diffusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Area

Al:

Aluminum

C p :

Specific heat

D :

Diffusion coefficient

d :

Diameter

E A :

Activation energy

F :

Force

H :

Enthalpy

k B :

Boltzmann constant

M :

Mass

m :

Thickness exponent, mass

N :

Number of atoms

n :

Diameter exponent

Ni:

Nickel

P :

Pressure

q :

Generalized coordinate

Q :

Inertia factor

R :

Gas constant

r :

Position vector, radius

s :

Thermostat degree of freedom

T :

Temperature

t :

Thickness

U :

Potential energy

V :

Volume, pair potential function

ρ :

Electron density function

δ s :

Shell thickness

δ t :

Thermal displacement

τ b :

Burning time

ad:

Adiabatic

c:

Core

cm:

Center of mass

f:

Formation

i :

Initial, interface, atom index variable

j :

Atom index variable

m:

Melting

p:

Particle

prod:

Products

reac:

Reactants

References

  • Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  Google Scholar 

  • Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. Combust Flame 150:60–70

    Article  Google Scholar 

  • Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12:44–50

    Article  Google Scholar 

  • Baras F, Politano O (2011) Molecular dynamics simulations of nanometric metallic multilayers: reactivity of the Ni-Al system. Phys Rev B 84:024113

    Article  Google Scholar 

  • Du Y, Chang YA, Huang B, Gong W, Jin Z, Xu H, Yuan Z, Liu Y, He Y, Xie FY (2003) Diffusion coefficients of some solutes in FCC and liquid Al: critical evaluation and correlation. Mater Sci Eng 363:140–151

    Article  Google Scholar 

  • Eckert J, Holzer JC, Ahn CC, Fu Z, Johnson WL (1993) Melting behavior of nanocrystalline aluminum powders. Nanostruct Mater 2:407–413

    Article  Google Scholar 

  • Ejima T, Yamamura T, Uchida N, Matsuzaki Y, Nikaido M (1980) Impurity diffusion of fourth period solutes (Fe Co, Ni, Cu and Ga) and homovalent solutes (In and Tl) into molten aluminium. J Jpn Inst Met 44:316–323

    Google Scholar 

  • Farber L, Klinger L, Gotman I (1998) Modeling of reactive synthesis in consolidated blends of fine Ni and Al powders. Mater Sci Eng A 254:155–165

    Article  Google Scholar 

  • Fischer SH, Grubelich MC (1996) A survey of combustion of metals, thermites, and intermetallics for pyrotechnic applications. AIAA Paper No. 96-3018

  • Fischer SH, Grubelich MC (1998) Theoretical energy release of thermites, intermetallics, and combustible metals. In: Proceedings of the international pyrotechnics seminar

  • Foley TJ, Johnson CE, Higa KT (2005) Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem Mater 17:4086–4091

    Article  Google Scholar 

  • Henz BJ, Hawa T, Zachariah M (2009) Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles. J Appl Phys 105:124310

    Article  Google Scholar 

  • Huang Y, Risha GA, Yang V, Yetter RA (2009) Effect of particle size on combustion of aluminum particle dust in air. Combust Flame 156:5–13

    Article  Google Scholar 

  • Hunt EN, Plantier KB, Pantoya ML (2004) Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide. Acta Mater 52:3183–3191

    Article  Google Scholar 

  • Lai SL, Carlsoon JRA, Allen LH (1998) Melting point depression of Al clusters generated during the early stages of film growth: nanocalorimetry measurements. Appl Phys Lett 72:1098–1100

    Article  Google Scholar 

  • Levchenko EV, Evteev AV, Riley DP, Belova IV, Murch GE (2010) Molecular dynamics simulation of the alloying reaction in Al-coated Ni nanoparticle. Comput Mater Sci 47:712–720

    Article  Google Scholar 

  • Levitas VI, Samani K (2011) Size and mechanics effects in surface-induced melting of nanoparticles. Nat Commun 2:284

    Article  Google Scholar 

  • Li HP (2003) An investigation of the ignition manner effects on combustion synthesis. Mater Chem Phys 80:758–767

    Article  Google Scholar 

  • Lu SN, Ahrens TJ (2003) Superheating systematics of crystalline solids. Appl Phys Lett 82:1836–1838

    Article  Google Scholar 

  • Massalski TB (1992) Binary phase diagrams. ASM International, Materials Park

    Google Scholar 

  • Mei QS, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci 52:1175–1262

    Article  Google Scholar 

  • Meschel SV, Kleppa OJ (2001) Thermochemistry of alloys of transition metals and lanthanide metals with some IIIB and IVB elements in the periodic table. J Alloys Compd 321:183–200

    Article  Google Scholar 

  • Morsi K (2001) Reaction synthesis processing of Ni–Al intermetallic materials. Mater Sci Eng A 299:1–15

    Article  Google Scholar 

  • Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  • Papanicolaou NI, Chamati H, Evangelakis GA, Papaconstantopoulos DA (2003) Second-moment interatomic potential for Al, Ni and Ni–Al alloys, and molecular dynamics application. Comput Mater Sci 27:191–198

    Article  Google Scholar 

  • Politano O, Baras F, Mukasyan AS, Vadchenko SG, Rogachev AS (2013) Microstructure development during NiAl intermetallic synthesis in reactive Ni–Al nanolayers: numerical investigations vs TEM observations. Surf Coat Technol 215:485–492

    Article  Google Scholar 

  • Praizey JP, Garandet JP, Frohberg G, Griesche A, Kraatz KH (2000) Diffusion experiments in liquid metals. In: Proceedings of the first international symposium on microgravity research & applications in physical sciences and biotechnology, pp 481–490

  • Puri P, Yang V (2007) Effect of particle size on melting of aluminum at nano-scales. J Phys Chem C 111:11776–11783

    Article  Google Scholar 

  • Qi Y, Cagin T, Johnson WL, Goddard WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394

    Article  Google Scholar 

  • Reeves RV, Mukasyan AS, Son SF (2010) Thermal and impact reaction initiation in Ni/Al heterogeneous reactive systems. J Phys Chem C 114:14772–14780

    Article  Google Scholar 

  • Sundaram DS, Puri P, Yang V (2013) Thermochemical behavior of nickel-coated nanoaluminum particles. J Phys Chem C 117:7858–7869

    Article  Google Scholar 

  • Thiers L, Mukasyan AS, Varma A (2002) Thermal explosion in Ni–Al system: influence of reaction medium microstructure. Combust Flame 131:198–2009

    Article  Google Scholar 

  • Yih P (2000) U.S. Patent 6,010,610

    Google Scholar 

  • Zhao S, Germann TC, Strachan A (2006) Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. J Chem Phys 125:164707

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Air Force Office of Scientific Research (AFOSR) for their sponsorship of this program under Contract No. FA9550-11-1-0002. The support and encouragement provided by Dr. Mitat Birkan is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vigor Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaram, D.S., Puri, P. & Yang, V. Thermochemical behavior of nano-sized aluminum-coated nickel particles. J Nanopart Res 16, 2392 (2014). https://doi.org/10.1007/s11051-014-2392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2392-4

Keywords

Navigation