Skip to main content
Log in

Molecular Dynamics Simulation of Interdiffusion at the Initial Stage of High-Temperature Synthesis at the Dissolution of a Ni Nanoparticle in an Aluminum Matrix

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Interdiffusion at the initial stage of high-temperature synthesis under the conditions of Ni nanoparticle dissolution in an Al matrix has been studied by the molecular dynamics method. Nickel and aluminum may be both in the amorphous and in the crystalline state. It has been shown that the inflammation temperature of the high-temperature synthesis reaction in the Ni−Al system drops much faster when nickel is in the amorphous state. At constant temperature, the rate of interdiffusion has been shown to be almost independent of the aluminum structure (crystalline or amorphous).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. B. Miracle, Acta Metall. Mater. 41 (3), 649 (1993). https://doi.org/10.1016/0956-7151(93)90001-9

    Article  CAS  Google Scholar 

  2. P. Tresa and T. Sammy, J. Propul. Power 22 (2), 361 (2006). https://doi.org/10.2514/1.18239

    Article  Google Scholar 

  3. R. V. Reeves, A. S. Mukasyan, and S. F. Son, J. Phys. Chem. 114 (35), 14772 (2010). https://doi.org/10.1021/jp104686z

    Article  CAS  Google Scholar 

  4. A. S. Rogachev, Russ. Chem. Rev. 77 (1), 21 (2008). https://doi.org/10.1070/RC2008v077n01ABEH003748

    Article  CAS  ADS  Google Scholar 

  5. M. A. Morris and M. Leboeuf, Mater. Sci. Eng., A 224 (1–2), 1 (1997). https://doi.org/10.1016/S0921-5093(96)10532-3

    Article  Google Scholar 

  6. R. Bohn, T. Klassen, and R. Bormann, Intermetallics 9 (7), 559 (2001). https://doi.org/10.1016/S0966-9795(01)00039-5

    Article  CAS  Google Scholar 

  7. M. Kambara, K. Uenishi, and K. F. Kobayashi, J. Mater. Sci. 35 (11), 2897 (2000). https://doi.org/10.1023/A:1004771808047

    Article  CAS  ADS  Google Scholar 

  8. H. Kimura, Philos. Mag. A 73 (3), 723 (1996). https://doi.org/10.1080/01418619608242993

    Article  CAS  ADS  Google Scholar 

  9. V. V. Boldyrev and K. Tkáčová, J. Mater. Synth. Process. 8 (3–4), 121 (2000). https://doi.org/10.1023/A:1011347706721

    Article  CAS  Google Scholar 

  10. V. Yu. Filimonov, M. V. Loginova, S. G. Ivanov, A.  A.  Sitnikov, V. I. Yakovlev, A. V. Sobachkin, A.  Z.  Negodyaev, and A. Yu. Myasnikov, Combust. Sci. Technol. 192 (3), 457 (2020). https://doi.org/10.1080/00102202.2019.1571053

    Article  CAS  Google Scholar 

  11. M. V. Loginova, V. I. Yakovlev, V. Yu. Filimonov, A.  A.  Sitnikov, A. V. Sobachkin, S. G. Ivanov, and A. V. Gradoboev, Lett. Mater. 8 (2), 129 (2018). https://doi.org/10.22226/2410-3535-2018-2-129-134

    Article  Google Scholar 

  12. G. M. Poletaev, Yu. V. Bebikhov, A. S. Semenov, and M. D. Starostenkov, Lett. Mater. 11 (4), 438 (2021). https://doi.org/10.22226/2410-3535-2021-4-438-441

    Article  Google Scholar 

  13. G. M. Poletaev, A. A. Sitnikov, V. I. Yakovlev, and V. Yu. Filimonov, J. Exp. Theor. Phys. 134 (2), 183 (2022). https://doi.org/10.1134/S1063776122010095

    Article  CAS  ADS  Google Scholar 

  14. G. P. Purja Pun and Y. Mishin, Philos. Mag. 89 (34–36), 3245 (2009). https://doi.org/10.1080/14786430903258184

    Article  CAS  ADS  Google Scholar 

  15. E. V. Levchenko, T. Ahmed, and A. V. Evteev, Acta Mater. 136, 74 (2017). https://doi.org/10.1016/j.actamat.2017.06.056

    Article  CAS  ADS  Google Scholar 

  16. G. Poletaev, Yu. Bebikhov, and A. Semenov, Mater. Chem. Phys. 309, 128358 (2023). https://doi.org/10.1016/j.matchemphys.2023.128358

  17. G. M. Poletaev, Yu. V. Bebikhov, A. S. Semenov, and A. A. Sitnikov, J. Exp. Theor. Phys. 136 (4), 477 (2023). https://doi.org/10.1134/S1063776123040118

    Article  CAS  ADS  Google Scholar 

  18. G. Poletaev, Yu. Gafner, S. Gafner, Yu. Bebikhov, and A. Semenov, Metals 13 (10), 1664 (2023). https://doi.org/10.3390/met13101664

    Article  CAS  Google Scholar 

  19. Yu. Gafner, S. Gafner, L. Redel, and G. Poletaev, J. Nanopart. Res. 25 (10), 205 (2023). https://doi.org/10.1007/s11051-023-05850-y

    Article  CAS  ADS  Google Scholar 

  20. E. V. Levchenko, A. V. Evteev, T. Lorscheider, I. V. Belova, and G. E. Murch, Comput. Mater. Sci. 79, 316 (2013). https://doi.org/10.1016/j.commatsci.2013.06.005

    Article  CAS  Google Scholar 

  21. M. J. Cherukara, T. P. Weihs, and A. Strachan, Acta Mater. 96, 1 (2015). https://doi.org/10.1016/j.actamat.2015.06.008

    Article  CAS  ADS  Google Scholar 

Download references

Funding

This study was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Poletaev, R. Yu. Rakitin or V. V. Kovalenko.

Ethics declarations

The authors of this study declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Rakitin, R.Y. & Kovalenko, V.V. Molecular Dynamics Simulation of Interdiffusion at the Initial Stage of High-Temperature Synthesis at the Dissolution of a Ni Nanoparticle in an Aluminum Matrix. Tech. Phys. 68, 346–350 (2023). https://doi.org/10.1134/S106378422370010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422370010X

Keywords:

Navigation