Skip to main content
Log in

Structural dependence of the multi-functionalized carbon nanotubes to the substituents on the grafted diazo compounds

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Systematic studies on the covalent functionalization of multi-walled carbon nanotubes were performed by a series of azo molecules with different substituents. For this investigation, 4-substituted diazonium reagents have been used in the reaction with the functionalized multi-walled carbon nanotubes. We analyzed the effect of the substituted groups on the diazo component affinity in the grafting. Also, the structural differences of the final products were evaluated by visual dispersion test, UV–Vis absorption. Fourier transforms infrared, Raman, and several complementary techniques (scanning electron microscopy, thermal gravimetric analysis, and colorimetry test). Nuclear magnetic resonance spectroscopy has been used to confirm the allylic protons attached to the surface of carbon nanotubes after functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso-Lomillo MA, Rüdiger O, Maroto-Valiente A, Velez M, Rodríguez-Ramos I, Javier Muñoz F et al (2007) Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett 7(6):1603–1608

    Article  Google Scholar 

  • Amiri R, Rafiee H, Golshani A, Chalabian F (2013) Synthesis of dark brown single-walled carbon nanotubes and their characterization by HSQC-NMR. J Chem Sci 125(2):431–436

    Article  Google Scholar 

  • Campidelli S, Ballesteros B, Filoramo A, Diaz DD, Torres T et al (2008) Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via “click chemistry”. J Am Chem Soc 130(34):11503–11509

    Article  Google Scholar 

  • Hu C, Chen Z, Shen A, Shen X, Li J, Hu S (2006) Water-soluble single-walled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye. Carbon 44(3):428–434

    Article  Google Scholar 

  • Hu Z, Xue M, Zhang Q, Sheng Q, Liu Y (2008) Nanocolorant: a novel class of colorants preparation and performance characterization. Dye Pigment 76(1):173–178

    Article  Google Scholar 

  • Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chem Phys Chem 5(8):1084–1104

    Article  Google Scholar 

  • Kim B, Sigmund WM (2004) Functionalized multi-wall carbon nanotube/gold nanoparticle composite. Langmuir 20(19):8239–8242

    Article  Google Scholar 

  • Klinke C, Hannon JB, Afzali A, Avouris P (2006) Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett 6(5):906–910

    Article  Google Scholar 

  • Kong H, Gao C, Yan D (2004) Functionalization of multiwalled carbon nanotubes by transfer radical polymerization and defunctionalization of the products. Macromolecules 37(11):4022–4030

    Article  Google Scholar 

  • Lavat A, Wagner CC, Tasca JE (2008) Interaction of Co–ZnO pigments with ceramic first: a combined study by XRD, FTIR and UV-Visible. Ceram Int 34(8):2147–2153

    Article  Google Scholar 

  • Lee CS, Baker SE, Marcus MS, Yang WS, Eriksson MA, Hamers RJ (2004) Electrically addressable biomolecular functionalization of carbon nanotube and carbon nanofiber electrodes. Nano Lett 4(9):1713–1716

    Article  Google Scholar 

  • Liu J, Zubiri MR, Vigolo B, Dossot M, Fort Y, Ehrhardt JJ, Mcrae E (2007) Efficient microwave-assisted radical functionalization of single-wall carbon nanotubes. Carbon 45(4):885–891

    Article  Google Scholar 

  • Liu Z, Davis C, Cai WB, He L, Chen XY, Dai HJ (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105(5):1410–1415

    Article  Google Scholar 

  • McDonald R (1997) Colour physics for industry, 2nd edn. Society of Dyers and Colourists, London

    Google Scholar 

  • Mevellece V, Roussel S, Tessier L, Chancolon J, Mayne-L’Hermite M, Deniau G et al (2007) Grafting polymers on surface: a new powerful and versatile diazonium salt-based on step process in aqueous media. Chem Mater 19(2):6323–6330

    Article  Google Scholar 

  • Mishra AK, Arockiadoss T, Ramaprabhu S (2010) Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem Eng J 162(3):1026–1034

    Article  Google Scholar 

  • Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J et al (2003) Individually suspended single-walled carbon nanotube in various surfactants. Nano Lett 3(10):1379–1382

    Article  Google Scholar 

  • Niyogl S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35(12):1105–1113

    Article  Google Scholar 

  • Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with nobel metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159(7):595–603

    Article  Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management. Chem Eng J 170(3):395–410

    Article  Google Scholar 

  • Ritter U, Scharff P, Siegmund C, Dmytrenko OP, Kulish NP, Prylutskyy YI et al (2006) Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 44(13):2694–2700

    Article  Google Scholar 

  • Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Chemical detection with a single-walled carbon nanotubes capacitor. Science 307(5717):1942–1945

    Article  Google Scholar 

  • Stobinski L, Tomasik P, Lii CY, Chan HH, Lin HM, Liu HL et al (2003) Single-walled carbon nanotube-amylopectin complexes. Carbohydr Polym 51(3):311–316

    Article  Google Scholar 

  • Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, SalehSaeedi M (2010) Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese(III) salophen supported on multi-wall carbon nanotubes. Appl Catal A 381(2):233–241

    Article  Google Scholar 

  • Yanagi K, Lakoubovskii K, Matsui H, Matsuzaki H, Okamoto H, Miyata Y et al (2007) Photosensitive function of encapsulated dye in carbon nanotubes. J Am Chem Soc 129(16):4992–4997

    Article  Google Scholar 

  • Yang X, Qian L (2006) Assembly of prussian blue onto SiO2 nanoparticles and carbon nanotube electrostatic interactions. Colloids Surf A Physiochem Eng Asp 278(1):123–128

    Google Scholar 

  • Yang Z, Chen H, Cao L, Li H, Wang M (2004) Nanoscale azo pigment immobilized on carbon nanotubes via liquid phase reprecipitation approach. Mater Lett 58(17):2238–2242

    Article  Google Scholar 

  • Zhang W, Silva SRP (2010) Reversible functionalization of multi-walled carbon nanotubes with organic dyes. Scr Mater 63(6):645–648

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iranian nano technology initiative council. We would like to thank Central Tehran Branch of Islamic Azad University for the use of equipment research laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahebeh Amiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiri, R., Rasouli, S., Ghasemi, A. et al. Structural dependence of the multi-functionalized carbon nanotubes to the substituents on the grafted diazo compounds. J Nanopart Res 16, 2388 (2014). https://doi.org/10.1007/s11051-014-2388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2388-0

Keywords

Navigation