Skip to main content

Advertisement

Log in

Influence of low-energy plasma annealing on structural and optical properties of silver nanoclusters grown by magnetron sputtering deposition

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Structural and optical modifications induced by low-energy (≤80 eV) bias-plasma annealing of silver nanoclusters (2–25 nm) grown by magnetron sputtering deposition are reported. By combining postmortem structural characterizations and real-time optical measurements, we show that etching effects associated with enhanced Ag mobility result in progressive and irreversible changes of both the morphology and organization of the nanoclusters (i.e., decrease of the cluster size and intercluster distance as well as increase of their out-of-plane aspect ratio). Surface plasmon resonance bands of the nanoclusters are also modified by plasma treatment, which causes a blue-shift together with an amplitude decrease and a narrowing of the band. In addition, the kinetics of plasma-induced modifications can be easily controlled by varying the applied bias voltage. Therefore, plasma annealing could emerge as an efficient alternative to more traditional thermal annealing treatments for tuning the plasmonic properties of noble metal nanoclusters with great flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antad V, Simonot L, Babonneau D, Camelio S, Pailloux F, Guérin P (2012) Monitoring the reactivity of Ag nanoparticles in oxygen atmosphere by using in situ and real-time optical spectroscopy. J Nanophotonics 6:061502

    Article  Google Scholar 

  • Antad V, Simonot L, Babonneau D (2013) Tuning the surface plasmon resonance of silver nanoclusters by oxygen exposure and low-energy plasma annealing. Nanotechnology 24:045606

    Article  Google Scholar 

  • Babonneau D (2010) FITGISAXS: software package for modelling and analysis of gisaxs data using igor pro. J Appl Crystallogr 43:929–936

    Article  Google Scholar 

  • Bedel L, Cayron C, Jouve M, Maury F (2012) Embedded layer of Ag nanoparticles prepared by a combined PECVD/PVD process producing Sio x C y –Ag nanocomposite thin films. Nanotechnology 23:015603

    Article  Google Scholar 

  • Bhattacharyya SR, Datta D, Shyjumon I, Smirnov BM, Chini TK, Ghose D, Hippler R (2009) Growth and melting of silicon supported silver nanocluster films. J Phys D 42:1–9

    Google Scholar 

  • Bi H, Cai W, Kan C, Zhang L, Martin D, Träger F (2002) Optical study of redox process of Ag nanoparticles at high temperature. J Appl Phys 92:7491–7497

    Article  Google Scholar 

  • Borensztein Y, Delannoy L, Djedidi A, Barrera RG, Louis C (2010) Monitoring of the plasmon resonance of gold nanoparticles in Au/Tio2 catalyst under oxidative and reducing atmospheres. J Phys Chem C 114:9008–9021

    Article  Google Scholar 

  • Camelio S, Babonneau D, Lantiat D, Simonot L, Pailloux F (2009) Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion. Phys Rev B 80:155434

    Article  Google Scholar 

  • Chey SJ, Cahill DG (1997) Surface defects created by low energy (20 < E < 240 eV) ion bombardment of Ge(001). Surf Sci 380:377–384

    Article  Google Scholar 

  • Dong ZW, You GJ, Zhou P, Zhang CF, Liu KJ, Yan YL, Qian SX (2006) Heat treatment effect on the ultrafast dynamics and nonlinear optical properties of Ag:Si3n4 nanocermets. J Phys D 39:4766–4770

    Article  Google Scholar 

  • Esch S, Bott M, Michely T, Comsa G (1995) Nucleation of homoepitaxial films grown with ion assistance on Pt(111). Appl Phys Lett 67:3209–3211

    Article  Google Scholar 

  • Heilmann A, Werner J (1998) In situ observation of microstructural changes of embedded silver particles. Thin Solid Films 317:21–26

    Article  Google Scholar 

  • Henry C (2005) Morphology of supported nanoparticles. Prog Surf Sci 80:92–116

    Article  Google Scholar 

  • Hu J, Cai W, Li Y, Zeng H (2005) Oxygen-induced enhancement of surface plasmon resonance of silver nanoparticles for silver-coated soda-lime glass. J Phys 17:5349

    Google Scholar 

  • Iline A, Simon M, Stietz F, Träger F (1999) Adsorption of molecules on the surface of small metal particles studied by optical spectroscopy. Surf Sci 436:51–62

    Article  Google Scholar 

  • Kinnan MK, Chumanov G (2010) Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance. J Phys Chem C 114:7496–7501

    Article  Google Scholar 

  • Kolmakov A, Goodman DW (2002) In situ scanning tunneling microscopy of oxide-supported metal clusters: nucleation, growth, and thermal evolution of individual particles. Chem Rec 2:446–457

    Article  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  • Lantiat D, Babonneau D, Camelio S, Pailloux F, Denanot MF (2007) Evidence for capping-layer effects on the morphology and plasmon excitation of Ag nanoparticles. J Appl Phys 102:113518

    Article  Google Scholar 

  • Lapsley MI, Shahravan A, Hao Q, Juluri BK, Giardinelli S, Zhao Y, Lu M, Chiang IK, Matsoukas T, Huang TJ (2012) Shifts in plasmon resonance due to charging of a nanodisk array in argon plasma. Appl Phys Lett 100:101903

    Article  Google Scholar 

  • Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  Google Scholar 

  • Pan A, Yang Z, Zheng H, Liu F, Zhu Y, Su X, Ding Z (2003) Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous Sio2 glass by annealing treatment. Appl Surf Sci 205:323–328

    Article  Google Scholar 

  • Polman A (2008) Plasmonics. Science 322:868–869

    Article  Google Scholar 

  • Ren M, Jia B, Ou JY, Plum E, Zhang J, MacDonald KF, Nikolaenko AE, Xu J, Gu M, Zheludev NI (2011) Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv Mater 23:5540–5544

    Article  Google Scholar 

  • Ruffino F, Grimaldi MG, Bongiorno C, Giannazzo F, Roccaforte F, Raineri V (2008) Microstructure of Au nanoclusters formed in and on SiO2. Superlatt Microstruct 44:588–598

    Article  Google Scholar 

  • Sancho-Parramon J, Janicki V, Dubček P, Karlušić M, Gracin D, Jakšić M, Bernstorff S, Meljanac D, Juraić K (2010) Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution. Opt Mater 32:510–514

    Article  Google Scholar 

  • Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nature Mater 9:193–204

    Article  Google Scholar 

  • Serna R, Babonneau D, Suárez-García A, Afonso CN, Fonda E, Traverse A, Naudon A, Hole DE (2002) Effect of oxygen pressure on the optical and structural properties of Cu:Al2O3 nanocomposite films. Phys Rev B 66:205402

    Article  Google Scholar 

  • Simonot L, Babonneau D, Camelio S, Lantiat D, Guérin P, Lamongie B, Antad V (2010) In situ optical spectroscopy during deposition of Ag:Si3N4 nanocomposite films by magnetron sputtering. Thin Solid Films 518:2637–2643

    Article  Google Scholar 

  • Takele H, Kulkarni A, Jebril S, Chakravadhanula VSK, Hanisch C, Strunskus T, Zaporojtchenko V, Faupel F (2008) Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing. J Phys D 41:125409

    Article  Google Scholar 

  • Tang J, Photopoulos P, Tserepi A, Tsoukalas D (2011) Two-dimensional nanoparticle self-assembly using plasma-induced Ostwald ripening. Nanotechnology 22:235306

    Article  Google Scholar 

  • Teranishi T, Tasegawa S, Shimizu T, Miyake M (2001) Heat-induced size evolution of gold nanoparticles in the solid state. Adv Mater 13:1699–1701

    Article  Google Scholar 

  • Toudert J, Camelio S, Babonneau D, Denanot MF, Girardeau T, Espiños JP, Yubero F, Gonzalez-Elipe AR (2005) Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers. J Appl Phys 98:114316

    Article  Google Scholar 

  • Toudert J, Babonneau D, Simonot L, Camelio S, Girardeau T (2008) Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization. Nanotechnology 19:125709

    Article  Google Scholar 

  • Toudert J, Simonot L, Camelio S, Babonneau D (2012) Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances. Phys Rev B 86:045415

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the assistance from staff at the D2AM beamline (ESRF, Grenoble) during GISAXS experiments. They also thank Ph. Guérin and F. Pailloux for important contributions in sample fabrication by magnetron sputtering and structural characterization by HAADF-STEM, respectively. Author VA is grateful to “Région Poitou–Charentes” for providing the financial support for this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Simonot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antad, V., Simonot, L. & Babonneau, D. Influence of low-energy plasma annealing on structural and optical properties of silver nanoclusters grown by magnetron sputtering deposition. J Nanopart Res 16, 2328 (2014). https://doi.org/10.1007/s11051-014-2328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2328-z

Keywords

Navigation