Skip to main content
Log in

Effect of Ion Assistance on the Formation of Composite Carbon–Silver Coatings Obtained by Pulsed-Plasma Deposition

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We study composite coatings based on amorphous carbon with encapsulated silver nanoparticles, synthesized by pulsed-plasma sputtering in an argon atmosphere. The deposition is assisted by 100–300 eV argon ions using a KLAN-53M source; samples without ion assistance are also prepared for comparison. Transmission electron microscopy, electron diffraction, and characteristic electron-energy-loss spectroscopy are used to analyze the effect of the ion-assistance parameters on silver nanoparticles and the properties of the carbon matrix. The maximum fraction of sp3-hybridized atoms in the amorphous carbon matrix is achieved at an assistance energy of 100 eV and a current density of 22 μA/cm2, which is due to material densification and the cross-linking of graphite layers by the ion beam at the specified parameters. The effect of ion-induced processes on the size distribution of silver nanoparticles is described. Ion assistance initiates several processes during deposition: defect formation promoting the formation of nucleation centers for particles 3–5 nm in size, surface diffusion enhancing the coalescence of adatoms and nuclei, and the selective sputtering of silver. The combination of these effects leads to the formation of silver particles of two characteristic sizes: 3–5 and 20–30 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E.A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55, 1754 (2013).

    Article  CAS  Google Scholar 

  2. Y. Wang, H. Li, L. Ji, F. Zhao, Q. Kong, Y. Wang, X. Liu, W. Quan, H. Zhou, and J. Chen, Surf. Coat. Technol. 205, 3058 (2011). https://doi.org/10.1016/j.surfcoat.2010.11.019

  3. A. Tibrewala, E. Peiner, R. Bandorf, S. Biehl, and H. Luthje, Appl. Surf. Sci. 252, 5387 (2006). https://doi.org/10.1016/j.apsusc.2005.12.046

    Article  CAS  Google Scholar 

  4. D. Dasgupta, F. Demichelis, and A. Tagliaferro, Philos. Mag. B 63, 1255 (1991). https://doi.org/10.1080/13642819108205558

    Article  CAS  Google Scholar 

  5. A. Gangopadhyay, Tribol. Lett. 5, 25 (1998). https://doi.org/10.1023/A:1019152515982

    Article  CAS  Google Scholar 

  6. C. Popov, W. Kulisch, M. Jelinek, A. Bock, and J. Strnad, Thin Solid Films 494, 92 (2006). https://doi.org/10.1016/j.tsf.2005.07.163

    Article  CAS  Google Scholar 

  7. P. Yang, J. Y. Chen, Y. X. Leng, H. Sun, N. Huang, and P. K. Chu, Surf. Coat. Technol. 186, 125 (2004). https://doi.org/10.1016/j.surfcoat.2004.04.039

  8. L. A. Goncharov and V. G. Grigor’yan, Prikl. Fiz., No. 5, 67 (2007).

  9. F. Rossi, B. Andre, A. Veen, P. E. Mijnarends, H. Schut, M. P. Delplancke, W. Gissler, J. Haupt, G. Lucazeau, and L. Abello, J. Appl. Phys. 75, 3121 (1998). https://doi.org/10.1063/1.356164

    Article  Google Scholar 

  10. E. A. Buntov and A. F. Zatsepin, J. Phys. Chem. A 124, 9128 (2020). https://doi.org/10.1021/acs.jpca.0c05739

    Article  CAS  Google Scholar 

  11. E. A. Buntov, A. F. Zatsepin, A. I. Slesarev, Yu. V. Shchapova, S. Challinger, and I. Baikie, Carbon 152, 388 (2019). https://doi.org/10.1016/j.carbon.2019.06.042

    Article  CAS  Google Scholar 

  12. O. A. Streletskiy, I. A. Zavidovskiy, O. Yu. Nischak, and S. V. Dvoryak, Thin Solid Films 701, 137948 (2020). https://doi.org/10.1016/j.tsf.2020.137948

    Article  CAS  Google Scholar 

  13. O. A. Streletskiy, I. A. Zavidovskiy, O. Yu. Nischak, and A. A. Haidarov, Vacuum 175, 109286 (2020). https://doi.org/10.1016/j.vacuum.2020.109286

    Article  CAS  Google Scholar 

  14. M. Krause, A. Mücklich, T. W. H. Oates, M. Zschornak, S. Wintz, J. L. Endrino, C. Baehtz, A. Shalimov, S. Gemming, and G. Abrasonis, Appl. Phys. Lett. 101, 053112 (2012). https://doi.org/10.1063/1.4739417

    Article  Google Scholar 

  15. I. A. Faĭzrakhmanov, V. V. Bazarov, A. L. Stepanov, and I. B. Khaĭbullin, Semiconductors 40, 414 (2006). https://doi.org/10.1134/S1063782606040087

    Article  Google Scholar 

  16. A. Jurkevičiūtė, G. Klimaitė, T. Tamulevičius, J. Fiutowski, H.-G. Rubahn, and S. Tamulevičius, Adv. Engineering Mater. 22, 1900951 (2020). https://doi.org/10.1002/adem.201900951

    Article  Google Scholar 

  17. S. Domínguez-Meister, T. C. Rojas, J. E. Frías, and J. C. Sánchez-López, Tribol. Int. 140, 105837 (2019). https://doi.org/10.1016/j.triboint.2019.06.030

    Article  Google Scholar 

  18. L. Patnaik, S. R. Maity, and S. Kumar, Ceram. Int. 47, 6736 (2021). https://doi.org/10.1016/j.ceramint.2020.11.016

    Article  CAS  Google Scholar 

  19. S. Yu. Krasnoborod’ko, V. M. Roshchin, M. V. Silibin, and, V. I. Shevyakov, Khim. Fiz. Mezoskop. 13, 444 (2011).

    Google Scholar 

  20. A. P. Alekhin, G. M. Boleiko, S. A. Gudkova, A. M. Markeev, A. A. Sigarev, V. F. Toknova, A. G. Kirilenko, R. V. Lapshin, E. N. Kozlov, and D. V. Tetyukhin, Nanotechnol. Russ. 5, 596 (2010).

    Article  Google Scholar 

  21. A. I. Poplavsky, A. Ya. Kolpakov, Yu. Kudriavtsev, R. Asomoza, I. Yu. Goncharov, M. E. Galkina, S. S. Manokhin, and V. A. Kharchenko, Vacuum 152, 193 (2018). https://doi.org/10.1016/j.vacuum.2018.03.028

    Article  CAS  Google Scholar 

  22. I. A. Zavidovskii, O. A. Streletskii, O. Yu. Nishchak, N. F. Savchenko, S. V. Dvoryak, and A. V. Pavlikov, Tech. Phys. 65, 468 (2020). https://doi.org/10.21883/JTF.2020.03.48937.232-19

    Article  CAS  Google Scholar 

  23. A. Poplavsky, Yu. Kudriavtsev, and A. Kolpakov, Vacuum 184, 109919 (2021). https://doi.org/10.1016/j.vacuum.2020.109919

    Article  CAS  Google Scholar 

  24. I. A. Zavidovskiy, O. A. Streletskiy, O. Yu. Nishchak, A. A. Haidarov, and A. V. Pavlikov, Thin Solid Films 738, 138966 (2021). https://doi.org/10.1016/j.tsf.2021.138966

    Article  CAS  Google Scholar 

  25. Platar (2000). http://www.platar.ru/P6E.html. Cited 22 August 2021.

  26. Intelligent Scientometric Case Study System (2011). https://istina.msu.ru/equipment/card/29156772. Cited 22 August 2021

  27. N. Oudini, G. J. M. Hagelaar, J.-P. Boeuf, and L. Garrrigues, J. Appl. Phys. 109, 073310 (2011). https://doi.org/10.1063/1.3572053

    Article  Google Scholar 

  28. T. Mori and Y. Namba, J. Appl. Phys. 55, 3276 (1984). https://doi.org/10.1063/1.333385

    Article  CAS  Google Scholar 

  29. V. O. Babaev, Ju. V. Bykov, and M. B. Guseva, Thin Solid Films 38, 1 (1976). https://doi.org/10.1016/0040-6090(76)90272-8

    Article  CAS  Google Scholar 

  30. A. Ya. Kolpakov, A. I. Poplavsky, S. S. Manokhin, M. E. Galkina, I. Yu. Goncharov, R. A. Liubushkin, J. V. Gerus, P. V. Turbin, and L. V. Malikov, J. Nano- Electron. Phys. 8, 04019 (2016). https://doi.org/10.21272/jnep.8(4(1)).04019

  31. M. Marinov, Thin Solid Films 46, 267 (1977). https://doi.org/10.1016/0040-6090(77)90182-1

    Article  CAS  Google Scholar 

  32. N. Laegreid and G. K. Wehner, J. Appl. Phys. 32, 365 (1961). https://doi.org/10.1063/1.1736012

    Article  CAS  Google Scholar 

  33. O. Monteiro, Proc. 33rd IUVSTA Workshop and IV Brazilian Meeting on Diamond, Diamond-Like, Nanotubes, Nitrides and Silicon Carbide, Brazil, 2001.

  34. J. Bruley, D. B. Williams, J. J. Cuomo, and D. P. Pappas, J. Microsc. 180, 22 (1995). https://doi.org/10.1111/j.1365-2818.1995.tb03653.x

    Article  CAS  Google Scholar 

  35. N. Bernier, F. Bocquet, A. Allouche, W. Saikaly, C. Brosset, J. Thibault, and A. Charai, J. Electron Spectrosc. Relat. Phenom. 164, 34 (2008). https://doi.org/10.1016/j.elspec.2008.04.006

    Article  CAS  Google Scholar 

  36. B. André, F. Rossi, A. van Veen, P. E. Mijnarends, H. Schut, and M. P. Delplancke, Thin Solid Films 241, 171 (1994). https://doi.org/10.1016/0040-6090(94)90420-0

    Article  Google Scholar 

  37. R. G. Lacerda, P. Hammer, F. L. Freire, F. Alvarez, and F. C. Marques, Diamond Relat. Mater. 9, 796 (2000). https://doi.org/10.1016/S0925-9635(99)00326-X

Download references

ACKNOWLEDGMENTS

We are grateful to S.S. Abramchuk for providing transmission-electron-microscopy data.

Funding

I. A. Zavidovskiy is a fellow of the Foundation for the Development of Theoretical Physics and Mathematics “Basis” (grant no. 20-2-2-7-1). The study was supported by the Russian Foundation for Basic Research within the framework of scientific project no. 20-32-90 077. The study was supported by the Interdisciplinary Scientific and Educational School of Moscow University “Photonic and Quantum Technologies. Digital Medicine.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zavidovskiy.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavidovskiy, I.A., Streletskiy, O.A. & Nishchak, O.Y. Effect of Ion Assistance on the Formation of Composite Carbon–Silver Coatings Obtained by Pulsed-Plasma Deposition. J. Surf. Investig. 16, 864–869 (2022). https://doi.org/10.1134/S102745102205041X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102205041X

Keywords:

Navigation