Skip to main content
Log in

Synthesis and characterization of novel mesocomposites Co3O4 and CuO@OMS (ordered mesoporous silica) as active catalysts for hydrocarbon oxidation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Novel metal nanoporous transition metal oxides M x O y (Co3O4, CuO) have been synthesized by thermal decomposition of inorganic salts precursors (acetates, nitrates) impregnated into hexagonal mesoporous silica (OMS, ordered mesoporous silica) of SBA-15 type (prepared in-house) at different precursor loadings, the mesocomposites thus obtained being monitored after each impregnation–calcination step by small and wide angle powder XRD. The pore size for the ordered silica host range from 5.08 to 7.06 nm. Retention of the hexagonal silica framework has been observed in spite of the temperatures up to 500 °C. Mesoporous Co3O4 has been obtained by leaching the silica through overnight HF dissolution, which partially preserved the small-range ordering found in the parent Co3O4@OMS composite prior to leaching. Both Co3O4 (meso) and Co3O4@SBA-15 have been tested in methane oxidation and were found to be superior to the bulk Co3O4 performance, with mesoporous Co3O4 being able to fully oxidize methane to CO2 and H2O at 350 °C, while Co3O4@OMS exhibits a lower activity with 20 % conversion at 350 °C. CuO@OMS shows the lowest activity, with only ~13 % conversion at 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

OMS:

Ordered mesoporous silica

TM:

Transition metal

XRD:

X-ray diffraction

SAXS:

Small angle XRD

WAXRD:

Wide angle XRD

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

SAED:

Selected area electron diffraction

ICDD:

International center for diffraction data

References

  • Armelao L, Barreca D, Gross S, Martucci A, Tieto M, Tondello E (2001) Cobalt oxide-based films: sol–gel synthesis and characterization. J Non Cryst 293:477–482

    Article  Google Scholar 

  • Baldwin TR, Burch R (1990) Remarkable activity enhancement in the catalytic combustion of methane on supported palladium catalysts. Catal Lett 6(1):131–138

    Article  Google Scholar 

  • Benitez MJ, Petracic O, Tuysuz H, Schuth F, Zabel H (2011) Phys Rev B 83:134424

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Burch R, Loader PK (1994) Investigation of Pt/Al2O3 and Pd/Al2O3 catalysts for the combustion of methane at low concentrations. Appl Catal B 5(1–2):149–164

    Article  Google Scholar 

  • Carstens JN, Su SC, Bell AT (1998) Factors affecting the catalytic activity of Pd/ZrO2 for the combustion of methane. J Catal 176:136–142

    Article  Google Scholar 

  • Comanescu C, Guran C (2011) Influence of NaCl addition on the synthesis of SBA-15 mesoporous silica. UPB Sci Bull B 73(4):95–104

    Google Scholar 

  • Cullis CF, Willatt BM (1983) Oxidation of methane over supported precious metal catalysts. J Catal 83(2):267–285

    Article  Google Scholar 

  • Dahal N, Ibarra IA, Humphrey SM (2012) High surface area mesoporous Co3O4 from a direct soft template route. J Mater Chem 22:12675–12681

    Article  Google Scholar 

  • Galarneau A, Cambon H, Renzo FD, Fajula F (2001) True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17:8328–8335

    Article  Google Scholar 

  • Hicks RF, Qi H, Young ML, Lee RG (1990) Effect of catalyst structure on methane oxidation over palladium on alumina. J Catal 122:295–306

    Article  Google Scholar 

  • Jain NJ, George A, Bahadur P (1999) Effect of salt on the micellization of pluronic P65 in aqueous solution. Colloid Surf A 157:275–283

    Article  Google Scholar 

  • Kandalkar SG, Gunjakar JL, Lokhande CD (2008) Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl Surf Sci 254:5540–5544

    Article  Google Scholar 

  • Kondo JN, Domen K (2008) Crystallization of mesoporous metal oxides. Chem Mater 20(3):835–847

    Article  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature 359:710–712

    Article  Google Scholar 

  • Levy RM (1968) An X-ray study of the participation of the bulk phase of cobalt oxide in oxidation catalysis. J Phys Chem 72(7):2609–2614

    Article  Google Scholar 

  • Li Zh, Hoflund GB (1999) Catalytic oxidation of methane over Pd/Al2O3. React Kinet Catal Lett 66(2):367–374

    Article  Google Scholar 

  • Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium–ion batteries and gas sensors. Adv Funct Mater 15(5):851–857

    Article  Google Scholar 

  • Maruyama T, Arai S (1996) Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition. J Electrochem Soc 143(4):1383–1386

    Article  Google Scholar 

  • McCarthy JG, Chang YF, Wong VL, Johansson ME (1997) Kinetics of high temperature methane combustion by metal oxide catalysts. Div Pet Chem 42:158–162

    Google Scholar 

  • Milt VG, Lombardo EA, Ulla MA (2002) Stability of cobalt supported on ZrO2 catalysts for methane combustion. Appl Catal B 37:63–73

    Article  Google Scholar 

  • Pena MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2018

    Article  Google Scholar 

  • Pengpanich S, Meeyoo V, Risksomboon T, Bunyakiat K (2002) Catalytic oxidation of methane over CeO2–ZrO2 mixed oxide catalysts prepared via sol–gel technique: CO oxidation. Appl Catal A 234:221–233

    Article  Google Scholar 

  • Ribeiro FH, Chow M, Dallabetta RA (1994) Kinetics of the complete oxidation of methane over supported palladium. J Catal 146:537–544

    Article  Google Scholar 

  • Saracco G, Scibilia G, Iannibello A, Baldi G (1996) Methane combustion on Mg-doped LaCrO3 perovskite catalysts. Appl Catal B 8:229–244

    Article  Google Scholar 

  • Sekizawa K, Eguchi K, Widjaja H, Machida M, Arai H (1996) Property of Pd-supported catalysts for catalytic combustion. Catal Today 28(3):245–250

    Article  Google Scholar 

  • Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492

    Article  Google Scholar 

  • Shu P, Ruan J, Gao C, Li H, Che S (2009) Formation of mesoporous Co3O4 replicas of different mesostructures with different pore sizes. Microporous Mesoporous Mater 123:314–323

    Article  Google Scholar 

  • Taghavimoghaddam J, Knowles GP, Chaffee AL (2012) Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol. J Mol Catal A 358:79–88

    Article  Google Scholar 

  • Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–867

    Article  Google Scholar 

  • Tanev PT, Pinnavaia TJ (1996) Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties. Chem Mater 8:2068–2079

    Article  Google Scholar 

  • Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J (2009) Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J Phys Chem C 113:4357–4361

    Article  Google Scholar 

  • Waters RD, Weimer JJ, Smith JE (1995) An investigation of the activity of coprecipitated gold catalysts for methane oxidation. Catal Lett 30:181–188

    Article  Google Scholar 

  • Yang S, Maroto-Valiente A, Benito-Gonzales M, Rodriguez-Ramos I, Guerrero-Ruiz A (2000) Methane combustion over supported palladium catalysts: I. Reactivity and active phases. Appl Catal B 28:223–233

    Article  Google Scholar 

  • Yisup N, Cao Y, Feng W-L, Dai W-L, Fan K-N (2005) Catalytic oxidation of methane over novel Ce–Ni–O mixed oxide catalysts prepared by oxalate gel-coprecipitation. Catal Lett 99(3–4):207–213

    Article  Google Scholar 

  • Zamar F, Trovarelli A, Leitenbury CD, Dolcetti G (1995) CeO2-based solid solution with the fluorite structure as novel and effective catalysts for methane combustion. Chem Commun 9:965–966

    Article  Google Scholar 

  • Zavyalova U, Scholz P, Ondruschka B (2007) Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane. Appl Catal A 323:226–233

    Article  Google Scholar 

  • Zhang W, Pauly TR, Pinnavaia TJ (1997) Tailoring the framework and textural mesopores of hms molecular sieves through an electrically neutral (S°I°) assembly pathway. Chem Mater 9:2491–2498

    Article  Google Scholar 

  • Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  Google Scholar 

  • Zhao D, Sun J, Li Q, Stucky GD (2000) Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater 12(2):275–279

    Article  Google Scholar 

  • Zhu J, van Ommen JG, Bouwmeester HJM, Lefferts L (2005) Activation of O2 and CH4 on yttrium-stabilized zirconia for the partial oxidation of methane to synthesis gas. J Catal 233:434–441

    Article  Google Scholar 

Download references

Acknowledgments

Support of the Romanian Ministry of Education and Research through the project PNCDI-2 No. 72-196/2008 “New complex hydrides for hydrogen storage in hydride tank suitable for vehicular applications”—STOHICO and the financial support of the POSDRU-ID5159 doctoral fellowship are acknowledged. This work was partially supported from the Romanian Core Programme (Contract No. 45N/2014). I am grateful to Prof. Cornelia Guran for insightful discussions. I am in debt to senior researcher Viorica Pârvulescu for catalytic studies and insightful suggestions. I strongly acknowledge the support received from Prof. Giovanni Principi regarding training and usage of the research facilities at Universita Degli Studi di Padova, Italy, where most of this research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cezar Comănescu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comănescu, C. Synthesis and characterization of novel mesocomposites Co3O4 and CuO@OMS (ordered mesoporous silica) as active catalysts for hydrocarbon oxidation. J Nanopart Res 16, 2323 (2014). https://doi.org/10.1007/s11051-014-2323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2323-4

Keywords

Navigation