Skip to main content
Log in

Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Anionic copolymers can enable intracellular delivery of cationic drugs which otherwise cannot cross cell membrane barriers. We tested the efficacy of gentamicin-loaded magnetite block ionomer complexes (MBICs) against intracellular Brucella melitensis. Anionic block copolymers were used to coat nanomagnetite through adsorption of a portion of anions on the particle surfaces, then the remaining anions were complexed with 30–32 weight percentage of gentamicin. The zeta potential changed from −39 to −13 mV after encapsulation of the drug with complementary charge. The gentamicin-loaded MBICs had intensity average hydrodynamic diameters of 62 nm, while the polymer-coated nanomagnetite particles without drug were 34 nm in size. No toxicity as measured by a MTS assay was observed upon incubation of the MBICs with J774A.1 murine macrophage-like cells. Confocal microscopic images showed that the MBICs were taken up by the macrophages and distributed in the cell cytoplasm and endosomal/lysosomal compartments. Upon treatment with gentamicin-loaded MBICs (3.5 Log10), B. melitensis-infected macrophages showed significantly higher clearance of Brucella compared to the treatment with free g (0.9 Log10). Compared to doxycycline alone, a combination of doxycycline and gentamicin (either free or encapsulated in MBICs) showed significantly higher clearance of B. melitensis from chronically infected mice. Histopathological examination of kidneys from the MBICs-treated mice revealed multifocal infiltration of macrophages containing intracytoplasmic iron (MBICs) in peri-renal adipose. Although MBICs showed similar efficacy as free gentamicin against Brucella in mice, our strategy presents an effective way to deliver higher loads of drugs intracellularly and ability to study the bio-distribution of drug carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066(1):29–36

    Article  CAS  Google Scholar 

  • Al-Tawfiq JA (2008) Therapeutic options for human brucellosis. Expert Rev Anti Infect Ther 6(1):109–120. doi:10.1586/14787210.6.1.109

    Article  CAS  Google Scholar 

  • Anhalt JP (1977) Assay of gentamicin in serum by high-pressure liquid chromatography. Antimicrob Agents Chemother 11(4):651–655

    Article  CAS  Google Scholar 

  • Avgoustakis K (2004) Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv 1(4):321–333

    Article  CAS  Google Scholar 

  • Bajema IM, Hagen EC, Hansen BE, Hermans J, Noel LH, Waldherr R, Ferrario F, van der Woude FJ, Bruijn JA (1996) The renal histopathology in systemic vasculitis: an international survey study of inter- and intra-observer agreement. Nephrol Dial Transplant 11(10):1989–1995

    Article  CAS  Google Scholar 

  • Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A, Moriyon I, Moreno E (2007) Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE 2(7):e631

    Article  Google Scholar 

  • Capparelli R, Parlato M, Iannaccone M, Roperto S, Marabelli R, Roperto F, Iannelli D (2009) Heterogeneous shedding of Brucella abortus in milk and its effect on the control of animal brucellosis. J Appl Microbiol 106(6):2041–2047. doi:10.1111/j.1365-2672.2009.04177.x

    Article  CAS  Google Scholar 

  • Chrastina A, Massey KA, Schnitzer JE (2011) Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):421–437. doi:10.1002/wnan.143

    Article  CAS  Google Scholar 

  • Corbel MJ (1997) Brucellosis: an overview. Emerg Infect Dis 3(2):213–221

    Article  CAS  Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (Camb) (9):941–949. doi:10.1039/b514130c

  • Haque N, Bari MS, Hossain MA, Muhammad N, Ahmed S, Rahman A, Hoque SM, Islam A (2011) An overview of Brucellosis. Mymensingh Med J 20(4):742–747

    CAS  Google Scholar 

  • Hasanjani Roushan MR, Mohraz M, Hajiahmadi M, Ramzani A, Valayati AA (2006) Efficacy of gentamicin plus doxycycline versus streptomycin plus doxycycline in the treatment of brucellosis in humans. Clin Infect Dis 42(8):1075–1080. doi:10.1086/501359

    Article  Google Scholar 

  • Hou S, Chaikof EL, Taton D, Gnanou Y (2003) Synthesis of water-soluble star-block and dendrimer-like copolymers based on poly(ethylene oxide) and poly(acrylic acid). Macromolecules 36:3874–3881

    Article  CAS  Google Scholar 

  • Joss N, Morris S, Young B, Geddes C (2007) Granulomatous interstitial nephritis. Clin J Am Soc Nephrol 2(2):222–230. doi:10.2215/CJN.01790506

    Article  CAS  Google Scholar 

  • Kamat M, El-Boubbou K, Zhu DC, Lansdell T, Lu X, Li W, Huang X (2010) Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug Chem 21(11):2128–2135. doi:10.1021/bc100354m

    Article  CAS  Google Scholar 

  • Lecaroz C, Gamazo C, Blanco-Prieto MJ (2006) Nanocarriers with gentamicin to treat intracellular pathogens. J Nanosci Nanotechnol 6(9–10):3296–3302

    Article  CAS  Google Scholar 

  • Lecaroz MC, Blanco-Prieto MJ, Campanero MA, Salman H, Gamazo C (2007) Poly(d, l-lactide-coglycolide) particles containing gentamicin: pharmacokinetics and pharmacodynamics in Brucella melitensis-infected mice. Antimicrob Agents Chemother 51(4):1185–1190. doi:10.1128/AAC.00809-06

    Article  CAS  Google Scholar 

  • Martinez-Salgado C, Lopez-Hernandez FJ, Lopez-Novoa JM (2007) Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 223(1):86–98. doi:10.1016/j.taap.2007.05.004

    Article  CAS  Google Scholar 

  • Martirosyan A, Moreno E, Gorvel JP (2011) An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 240(1):211–234. doi:10.1111/j.1600-065X.2010.00982.x

    Article  CAS  Google Scholar 

  • Ogawara K, Yoshida M, Furumoto K, Takakura Y, Hashida M, Higaki K, Kimura T (1999) Uptake by hepatocytes and biliary excretion of intravenously administered polystyrene microspheres in rats. J Drug Target 7(3):213–221. doi:10.3109/10611869909085504

    Article  CAS  Google Scholar 

  • Perkins SD, Smither SJ, Atkins HS (2010) Towards a Brucella vaccine for humans. FEMS Microbiol Rev. doi:10.1111/j.1574-6976.2010.00211.x

    Google Scholar 

  • Pinto-Alphandary H, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 13(3):155–168

    Article  CAS  Google Scholar 

  • Pothaye N, Jain N, Vadala TP, Johnson LM, Mejia-Ariza R, Sriranganathan N, Davis RM, Riffle JS (2012) Block ionomer complexes for delivering polar antibiotics to kill intracellular Brucella melitensis in vitro. Polym Adv Technol 23(11):1484–1493. doi:10.1002/pat.2070

    Article  Google Scholar 

  • Pothayee N, Pothayee N, Jain N, Hu N, Balasubramaniam S, Johnson LM, Davis RM, Sriranganathan N, Riffle JS (2012) Magnetic block ionomer complexes for potential dual imaging and therapeutic agents. Chem Mater 24(11):2056–2063. doi:10.1021/Cm3004062

    Article  CAS  Google Scholar 

  • Prior S, Gander B, Lecaroz C, Irache JM, Gamazo C (2004) Gentamicin-loaded microspheres for reducing the intracellular Brucella abortus load in infected monocytes. J Antimicrob Chemother 53(6):981–988. doi:10.1093/jac/dkh227dkh227

    Article  CAS  Google Scholar 

  • Prior S, Gander B, Irache JM, Gamazo C (2005) Gentamicin-loaded microspheres for treatment of experimental Brucella abortus infection in mice. J Antimicrob Chemother 55(6):1032–1036. doi:10.1093/jac/dki144

    Article  CAS  Google Scholar 

  • Ranjan A, Pothayee N, Seleem MN, Sriranganathan N, Kasimanickam R, Makris M, Riffle JS (2009a) In vitro trafficking and efficacy of core-shell nanostructures for treating intracellular Salmonella infections. Antimicrob Agents Chemother 53(9):3985–3988. doi:10.1128/AAC.00009-09

    Article  CAS  Google Scholar 

  • Ranjan A, Pothayee N, Seleem MN, Tyler RD Jr, Brenseke B, Sriranganathan N, Riffle JS, Kasimanickam R (2009b) Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int J Nanomedicine 4:289–297

    Article  CAS  Google Scholar 

  • Ristuccia AM, Cunha BA (1982) The aminoglycosides. Med Clin North Am 66(1):303–312

    CAS  Google Scholar 

  • Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N (2009) Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett 294(1):24–31. doi:10.1111/j.1574-6968.2009.01530.x

    Article  CAS  Google Scholar 

  • Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1062(1):77–82

    Article  CAS  Google Scholar 

  • Silverstein SC, Kabbash C (1994) Penetration, retention, intracellular localization, and antimicrobial activity of antibiotics within phagocytes. Curr Opin Hematol 1(1):85–91

    CAS  Google Scholar 

  • Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2011) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl Mater Interfaces 3(3):842–856. doi:10.1021/am101196v

    Article  CAS  Google Scholar 

  • Skalsky K, Yahav D, Bishara J, Pitlik S, Leibovici L, Paul M (2008) Treatment of human brucellosis: systematic review and meta-analysis of randomised controlled trials. BMJ 336(7646):701–704. doi:10.1136/bmj.39497.500903.25

    Article  CAS  Google Scholar 

  • Solera J (2010) Update on brucellosis: therapeutic challenges. Int J Antimicrob Agents 36(Suppl 1):S18–20. doi:10.1016/j.ijantimicag.2010.06.015

    Article  CAS  Google Scholar 

  • Solera J, Espinosa A, Martinez-Alfaro E, Sanchez L, Geijo P, Navarro E, Escribano J, Fernandez JA (1997) Treatment of human brucellosis with doxycycline and gentamicin. Antimicrob Agents Chemother 41(1):80–84

    CAS  Google Scholar 

  • Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16(2–3):195–214

    Article  CAS  Google Scholar 

  • Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9(12):4434–4440. doi:10.1021/nl902715v

    Article  CAS  Google Scholar 

  • Vert M, Mauduit J, Li S (1994) Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15(15):1209–1213

    Article  CAS  Google Scholar 

  • Vitas AI, Diaz R, Gamazo C (1997) Protective effect of liposomal gentamicin against systemic acute murine brucellosis. Chemotherapy 43(3):204–210

    Article  CAS  Google Scholar 

  • Yu B, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298. doi:10.3109/09687688.2010.521200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Virginia Tech Institute for Critical Technology and Applied Sciences (ICTAS) and the National Science Foundation under Contract DMR-0805179. We thank Mrs. Kay Carlson and Garrett Smith for their help with mice experiments and preparation of this manuscript, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nammalwar Sriranganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain-Gupta, N., Pothayee, N., Pothayee, N. et al. Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection. J Nanopart Res 15, 2024 (2013). https://doi.org/10.1007/s11051-013-2024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2024-4

Keywords

Navigation