Skip to main content
Log in

Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO2, have potential for wastewater treatment. In this study, TiO2 anatase phase nanobelts (30–100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h+), and hydrogen peroxide (H2O2)—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO2 nanobelt membranes, including those harnessing sunlight for water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing tio2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289. doi:10.1021/nl070264k

    Article  CAS  Google Scholar 

  • Allen SJ, Mckay G, Khader KYH (1989) Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Poll 56:39–50. doi:10.1016/0269-7491(89)90120-6

    Article  CAS  Google Scholar 

  • Al-Qaradawi S, Salman SR (2004) Photocatalytic degradation of methyl orange as a model compound. J Photoche Photobiol A 148:161–168. doi:10.1016/S1010-6030(02)00086-2

    Article  Google Scholar 

  • Arrouvel C, Digne M, Breysse M, Toulhoat H, Raybaud P (2004) Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase-TiO2 and γ-alumina catalytic supports. J Catal 222:152–166. doi:10.1016/j.jcat.2003.10.016

    Article  CAS  Google Scholar 

  • Bahnemann D, Bockelmann D, Goslich R (1991) Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Solar Energy Mater 24:564–583. doi:10.1016/0165-1633(91)90091-X

    Article  CAS  Google Scholar 

  • Barka N, Qourzal S, Assabbane A, Nounah A, Ait-Ichou Y (2008) Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper. J Photochem Photobiol A 195(2–3):346–351. doi:10.1016/j.jphotochem.2007.10.022

    Article  CAS  Google Scholar 

  • Bloecher C (2007) Elimination of micropollutants and hazardous substances at the source in the chemical and pharmaceutical industry. Water Sci Technol 56(12):119–123. doi:10.2166/wst.2007.820

    Article  CAS  Google Scholar 

  • Bousselmi L, Geissen SU, Schroeder H (2004) Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia. Water Sci Technol 49(4):331–337

    CAS  Google Scholar 

  • Bouzaida I, Ferronato C, Chovelon JM, Rammah ME, Herrmann JM (2004) Heterogeneous photocatalytic degradation of the anthraquinonic dye, Acid Blue 25 (AB25): a kinetic approach. J Photochem Photobiol A 168:23–30. doi:10.1016/j.jphotochem.2004.05.008

    Article  CAS  Google Scholar 

  • Cho CH, Han MH, Kim DH, Kim DK (2005) Morphology evolution of anatase TiO2 nanocrystals under a hydrothermal condition (pH = 9.5) and their ultra-high photo-catalytic activity. Mater Chem Phys 92:104–111. doi:10.1016/j.matchemphys.2004.12.036

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tyrk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobio C 1(1):1–21. doi:10.1016/S1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  • Giri RR, Ozaki H, Ota S, Takanami R, Taniguchi S (2010) Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques. Int J Environ Sci Tech 7(2):251–260

    Article  CAS  Google Scholar 

  • He J, Ma W, Song W, Zhao J, Qian X, Zhang S, Yu JC (2005) Photoreaction of aromatic compounds at αα-FeOOH/H2O interface in the presence of H2O2: evidence for organic-goethite surface complex formation. Water Res 39(1):119–128. doi:10.1016/j.watres.2004.09.006

    Article  CAS  Google Scholar 

  • Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with oh groups adsorbed at electronic defects on TiO2 (110). J Phys Chem B 107(2):534–545. doi:10.1021/jp0262113

    Article  CAS  Google Scholar 

  • Ho Y, McKey G (1998) The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng 76(4):822–827. doi:10.1002/cjce.5450760419

    Article  CAS  Google Scholar 

  • Houas A, Lachheb H, Ksibi M, Elaloi E, Guillard C, Herrmann J (2001) Appl Catal B 31(2):145–157. doi:10.1016/S0926-3373(00)00276-9

    Article  CAS  Google Scholar 

  • Hu A, Zhang X, Oakes KD, Peng P, Zhou Y, Servos M (2011) Hydrothermal growth of TiO2 nanowire membranes for ultrafiltration and photocatalytic degradation of pharmaceuticals. J Hazard Mater 189(1–2):278–285. doi:10.1016/j.jhazmat.2011.02.033

    Article  CAS  Google Scholar 

  • Hu A, Zhang X, Luong D, Oakes KD, Servos MR, Liang R, Kurdi S, Peng P, Zhou Y (2013) Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment. Waste Biomass Valoriz 3:443–449. doi:10.1007/s12649-012-9142-6

    Article  Google Scholar 

  • Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A 134(1–2):139–142. doi:10.1016/S1010-6030(00)00264-1

    Article  CAS  Google Scholar 

  • Kim I, Tanaka H (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environ Int 25(5):793–802. doi:10.1016/j.envint.2009.01.003

    Article  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35(2):402–417. doi:10.1016/j.envint.2008.07.009

    Article  CAS  Google Scholar 

  • Kumar KV, Ramamurthi V, Sivanesan S (2005) Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J Coll Int Sci 284:114–121. doi:10.1016/j.jcis.2004.09.063

    Article  Google Scholar 

  • Lapenna D, De Gioia S, Mezzetti A, Ciofani G, Festi D, Cuccurullo F (1995) Aminophylline: could it act as an antioxidant in vivo? Eur J Clin Invest 25(7):464–470

    Article  CAS  Google Scholar 

  • Li W, Liu C, Zhou YX, Bai Y, Feng X, Yang ZH, Lu LH, Lu XH, Chan KY (2008) Enhanced photocatalytic activity in anatase/TiO2(B) core–shell nanofiber. J Phys Chem C 112(51):20539–20545. doi:10.1021/jp808183q

    Article  CAS  Google Scholar 

  • Li Q, Liu B, Wang L, Li D, Liu R, Zou B, Cui T, Zou G (2010) Pressure-induced amorphization and polyamorphism in one-dimensional single-crystal TiO2 nanomaterials. J Phys Chem Lett 1(1):309–314. doi:10.1021/jz9001828

    Article  CAS  Google Scholar 

  • Lin H, Huang CP, Li W, Ni C, Ismat Shah S, Tseng Y (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B 68(1–2):1–11. doi:10.1016/j.apcatb.2006.07.018

    CAS  Google Scholar 

  • Lin L, Chai Y, Zhao B, Wei W, He D, He B, Tang Q (2013) Photocatalytic oxidation for degradation of VOCs. Open J Inorg Chem 3:14–25. doi:10.4236/ojic.2013.31003

    Article  Google Scholar 

  • Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B 37(1):1–15. doi:10.1016/S0926-3373(01)00315-0

    Article  CAS  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59. doi:10.1016/j.cattod.2009.06.018

    Article  CAS  Google Scholar 

  • Maoz A, Chefetz B (2010) Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions. Water Res 44(3):981–989. doi:10.1016/j.watres.2009.10.019

    Article  CAS  Google Scholar 

  • Mazza T, Barborini E, Piseri P, Milani P, Cattaneo D, Li Bassi A, Bottani CE, Ducati C (2007) Raman spectroscopy characterization of TiO2 rutile nanocrystals. Phys Rev B 75(4):045416-1-5. doi:10.1103/PhysRevB.75.045416

    Article  Google Scholar 

  • Mozia S, Tomaszewska M, Morawski AW (2007) Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation—Effectiveness of removal of three azo dyes from water. Catal Today 129(1–2):3–8. doi:10.1016/j.cattod.2007.06.043

    Article  CAS  Google Scholar 

  • Naddeo V, Rizzo L, Belgiorno V (2011) Water, wastewater and soil treatment by advance oxidation processes. Lulu, Raleigh

    Google Scholar 

  • Paola AD, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts 3(1):36–73. doi:10.3390/catal3010036

    Article  Google Scholar 

  • Pignatello JJ, Oliveros E, Mackay A (2006) Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84. doi:10.1080/10643380500326564

    Article  CAS  Google Scholar 

  • Quiroz MA, Bandala ER, Martinez-Huitle CA (2011) Advanced oxidation processes (AOPs) for removal of pesticides from aqueous media. In: Stoytcheva M (ed) Pesticides—formulations, Effects, Fate. InTech, Baltimore, pp 685–730

    Google Scholar 

  • Rengifo-Herrera JA, Pizzio LR, Blanco MN, Roussel C, Pulgarin C (2011) Photocatalytic discoloration of aqueous malachite green solutions by UV-illuminated TiO2 nanoparticles under air and nitrogen atmospheres: effects of counter-ions and pH. Photochem Photobiol Sci 10:29–34. doi:10.1039/C0PP00196A

    Article  CAS  Google Scholar 

  • Richardson SD (2008) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 80:4373–4402. doi:10.1021/ac800660d

    Article  CAS  Google Scholar 

  • Richardson SD, Thurston AD, Collette TW, Patterson KS, Lykins BW, Ireland JC (1996) Identification of TiO2/UV disinfection byproducts in drinking water. Environ Sci Technol 30:3327–3334. doi:S0013-936X(96)00142-3

    Article  CAS  Google Scholar 

  • Rizzo L, Meric S, Guida M, Kassinos D, Belgiorno V (2009) Heterogeneous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res 43(16):4070–4078. doi:10.1016/j.watres.2009.06.046

    Article  CAS  Google Scholar 

  • Rosal R, Rodriguez A, Perdigon-Melon JA, Petre A, Garcia-Calvo E, Gomez MJ, Aguera A, Fernandez-Alba AR (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44(2):578–588. doi:10.1016/j.watres.2009.07.004

    Article  CAS  Google Scholar 

  • Selcuk H (2010) Disinfection and formation of disinfection by-products in a photoelectrocatalytic system. Water Res 44(13):3966–3972. doi:10.1016/j.watres.2010.04.034

    Article  CAS  Google Scholar 

  • Sikuvhihulu LC, Coville NJ, Ntho T, Scurrell MS (2008) Potassium titanate: an alternative support for gold catalyzed carbon monoxide oxidation. Catal Lett 123(3–4):193–197. doi:10.1007/s10562-008-9439-z

    Article  CAS  Google Scholar 

  • Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. doi:10.1016/j.envint.2011.07.012

    Article  Google Scholar 

  • Solarchem Environmental Systems (1994) The UV/oxidation handbook. Solarchem Environmental Systems, Markham

    Google Scholar 

  • Sua′ rez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7:125–138. doi:10.1007/s11157-008-9130-2

    Article  Google Scholar 

  • Sun Q, Yang L (2003) The adsorption of basic dyes from aqueous solution on modified peat–resin particle. Water Res 37(7):1535–1544. doi:10.1016/S0043-1354(02)00520-1

    Article  CAS  Google Scholar 

  • Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Stat Sol 15:627–637. doi:0.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  • Walker GM, Hansen L, Hanna JA, Allen SJ (2003) Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Res 37(9):2081–2089. doi:10.1016/S0043-1354(02)00540-7

    Article  CAS  Google Scholar 

  • Weber WJ, Morriss JC (1963) Kinetics of adsorption of carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–51

    Google Scholar 

  • Wintgens T, Salehi F, Hochstrat R, Melin T (2008) Emerging contaminants and treatment options in water recycling for indirect potable use. Water Sci Technol 57(1):99–107. doi:10.2166/wst.2008.799

    Article  CAS  Google Scholar 

  • Wu Z, Dong F, Zhao W, Wang H, Liu Y, Guan B (2009) The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20:235701. doi:10.1088/0957-4484/20/23/235701

    Article  Google Scholar 

  • Wu W, Lei B, Rao H, Xu Y, Wang Y, Su C, Kuang D (2013) Hierarchical oriented anatase TiO2 nanostructure arrays on flexible substrate for efficient dye-sensitized solar cells. Sci Rep 3:1352. doi:10.1038/srep01892

    CAS  Google Scholar 

  • Yang D, Liu H, Zheng Z, Yuan Y, Zhao J, Waclawik ER, Ke X, Zhu H (2009) An efficient photocatalyst structure, TiO2(B) nanofibers with a shell of anatase nanocrystal. J Am Chem Soc 131:17885–17893. doi:10.1021/ja906774k

    Article  CAS  Google Scholar 

  • Yao WF, Xu XH, Wang H, Zhou JT, Yang XN, Zhang Y, Shang SX, Huang BB (2004) Photocatalytic property of perovskite bismuth titanate. Appl Catal B 52(2):109–116. doi:10.1016/j.apcatb.2004.04.002

    Article  CAS  Google Scholar 

  • Yin S, Uchida S, Fujishiro Y, Wu J, Aki M, Sato T (2000) Photocatalytic properties of titania prepared by the solvothermal reactions of protonic layered tetratitanate. Int J Inorg Mater 2:325–331

    Article  CAS  Google Scholar 

  • Zárate RA, Fuentes S, Wiff JP, Fuenzalida VM, Cabrera AL (2007) Chemical composition and phase identification of sodium titanate nanostructures grown from titania by hydrothermal processing. J Phys Chem Solids 68(4):628–637. doi:10.1016/j.jpcs.2007.02.011

    Article  Google Scholar 

  • Zhang X, Sun DD, Li G, Wang Y (2008) Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp. J Photochem Photobiol A 199(2–3):311–315. doi:10.1016/j.jphotochem.2008.06.009

    Article  CAS  Google Scholar 

  • Zhang X, Pan J, Du A, Fu W, Sun D, Leckie J (2009) Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment. Water Res 43:1179–1186. doi:10.1016/j.watres.2008.12.021

    Article  CAS  Google Scholar 

  • Zheng Z, Liu H, Ye J, Zhao J, Waclawik ER, Zhu H (2010) Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2(B) phases. J Mol Catal A 316:75–82. doi:10.1016/j.molcata.2009.10.002

    Article  CAS  Google Scholar 

  • Zhou W, Liu H, Wang J, Liu D, Du G, Han S, Lin J, Wang R (2010) Interface dominated high photocatalytic properties of electrostatic self-assembled Ag2O/TiO2 heterostructure. Phys Chem Chem Phys 12:15119–15123. doi:10.1039/C0CP00734J

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Natural Sciences and Engineering Research Council of Canada through a strategic project grant, the Canadian Water Network Innovative Technologies for Water Treatment Program, and the Canada Research Chairs Program. Technical support from Trojan UV, the City of Guelph Wastewater Services, Deep Blue NRG, and GE Water & Process Technologies is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anming Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, R., Hu, A., Li, W. et al. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts. J Nanopart Res 15, 1990 (2013). https://doi.org/10.1007/s11051-013-1990-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1990-x

Keywords

Navigation