Skip to main content
Log in

Giant magnetoresistance in cluster-assembled nanostructures: on the influence of inter-particle interactions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The giant magnetoresistance response of granular systems has since its discovery been described by a simple model based on the geometric orientation of the magnetic moments of adjacent nanoparticles. This model has been proven quite successful in many cases but its being based on decoupled neighboring grains has never been verified as all available studies rely on samples with too high concentration. Here we report on magnetic and magnetotransport measurements of cluster-assembled nanostructures with cobalt clusters around 2.3 nm diameter embedded in copper matrices at different concentrations. The thorough magnetic characterization based on the recently developed “triple fit” method allows the detection of measurable inter-particle interactions and thus assures true superparamagnetic behavior in the most dilute sample. The spintronic response is compared to theory and we show that only at low concentration (0.5 at.% Co) all experiments are consistent and the common theoretical description is appropriate. Increasing the concentration to 2.5 and 5 at.% implies deviations between magnetometry and magnetotransport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allia P, Knobel M, Tiberto P, Vinai F (1995) Magnetic properties and giant magnetoresistance of melt-spun granular Cu100−x –Co x alloys. Phys Rev B 52:15398. doi:10.1103/PhysRevB.52.15398

    Article  Google Scholar 

  • Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D 35:R15

    Article  Google Scholar 

  • Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker FT, Hutten A, Thomas G (1992) Giant magnetoresistance in heterogeneous Cu–Co alloys. Phys Rev Lett 68:3745. doi:10.1103/PhysRevLett.68.3745

    Article  Google Scholar 

  • Binns C, Trohidou KN, Bansmann J, Baker SH, Blackman JA, Bucher JP, Kechrakos D, Kleibert A, Louch S, Meiwes-Broer KH, Pastor GM, Perez A, Xie Y (2005) The behaviour of nanostructured magnetic materials produced by depositing gas-phase nanoparticles. J Phys D 38:R357

    Article  Google Scholar 

  • Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ferrari EF, da Silva FCS, Knobel M (1997) Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys Rev B 56:6086. doi:10.1103/PhysRevB.56.6086

    Article  Google Scholar 

  • Gittleman JI, Goldstein Y, Bozowski S (1972) Magnetic properties of granular nickel films. Phys Rev B 5:3609. doi:10.1103/PhysRevB.5.3609

    Article  Google Scholar 

  • Guimarães AP (2009) Principles of nanomagnetism. Springer, Heidelberg

    Book  Google Scholar 

  • Henriquez R, Oyarzun S, Flores M, Suarez MA, Moraga L, Kremer G, Gonzalez-Fuentes CA, Robles M, Munoz RC (2010) Size effects on the hall constant in thin gold films. J Appl Phys 108:123704

    Article  Google Scholar 

  • Hillenkamp M, Di Domenicantonio G, Félix C (2008) Interaction effects in dilute cluster-assembled magnetic nanostructures. Phys Rev B 77:014422

    Article  Google Scholar 

  • Hillion A (2012) Study of magnetic properties on assemblies of Co, FeRh and FeAu nanoparticles. Ph.D. thesis, University of Lyon 1

  • Kelly P, O’Grady K, Mayo P, Chantrell RW (1989) Switching mechanisms in cobalt–phosphorus thin films. IEEE Trans Magn 25:3881

    Article  Google Scholar 

  • Knobel M, Nunes W, Socolovsky L, De Biasi E, Vargas J, Denardin J (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836

    Google Scholar 

  • Mydosh J (1993) Spin glasses: an experimental introduction. Taylor & Francis, London

    Google Scholar 

  • Parent F, Tuaillon J, Stern LB, Dupuis V, Prevel B, Perez A, Melinon P, Guiraud G, Morel R, Barthélémy A, Fert A (1997) Giant magnetoresistance in Co–Ag granular films prepared by low-energy cluster beam deposition. Phys Rev B 55:3683. doi:10.1103/PhysRevB.55.3683

    Article  Google Scholar 

  • Perez A, Dupuis V, Tuaillon-Combes J, Bardotti L, Prevel B, Bernstein E, Mélinon P, Favre L, Hannour A, Jamet M (2005) Functionalized cluster-assembled magnetic nanostructures for applications to high integration-density devices. Adv Eng Mater 7:475

    Article  Google Scholar 

  • Rubin S, Holdenried M, Micklitz H (1998) Well-defined Co clusters embedded in an ag matrix: a model system for the giant magnetoresistance in granular films. Eur Phys J B 5:23–28

    Article  Google Scholar 

  • Tamion A, Hillenkamp M, Tournus F, Bonet E, Dupuis V (2009) Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures. Appl Phys Lett 95:062503

    Article  Google Scholar 

  • Tamion A, Hillenkamp M, Tournus F, Bonet E, Dupuis V (2012) Response to “comment on ‘accurate determination of the magnetic anisotropy in cluster-assembled nanostructures,”’ [appl. phys. lett. 100, 136101 (2012)]. Appl Phys Lett 100:136102

    Article  Google Scholar 

  • Tamion A, Raufast C, Hillenkamp M, Bonet E, Jouanguy J, Canut B, Bernstein E, Boisron O, Wernsdorfer W, Dupuis V (2010) Magnetic anisotropy of embedded Co nanoparticles: Influence of the surrounding matrix. Phys Rev B 81:144403. doi:10.1103/PhysRevB.81.144403

    Article  Google Scholar 

  • Xiao JQ, Jiang JS, Chien CL (1992) Giant magnetoresistance in nonmultilayer magnetic systems. Phys Rev Lett 68(25):3749–3752. doi:10.1103/PhysRevLett.68.3749

    Article  Google Scholar 

  • Zhang S, Levy PM (1993) Conductivity and magnetoresistance in magnetic granular films. J Appl Phys 73:5315. doi:10.1063/1.353766

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge technical support by C. Clavier, C. Albin, and G. Suteau of the “Plateforme LYonnaise de Recherche sur les Agrégats” and by R. Checa of the “Centre Lyonnais de Magnétometrie.” A.D.T.S. acknowledges a Grant from the Brazilian CAPES foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hillenkamp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC (1158 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyarzún, S., Domingues Tavares de Sa, A., Tuaillon-Combes, J. et al. Giant magnetoresistance in cluster-assembled nanostructures: on the influence of inter-particle interactions. J Nanopart Res 15, 1968 (2013). https://doi.org/10.1007/s11051-013-1968-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1968-8

Keywords

Navigation