Skip to main content
Log in

Individual-collective crossover driven by particle size in dense assemblies of superparamagnetic nanoparticles

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Prussian blue analogues (PBA) ferromagnetic nanoparticles CsI x NiII[CrIII(CN)6 ] z ·3(H2O) embedded in CTA+ (cetyltrimethylammonium) matrix have been investigated by magnetometry and magnetic small-angle neutron scattering (SANS). Choosing particle sizes (diameter D = 4.8 and 8.6 nm) well below the single-domain radius and comparable volume fraction of particle, we show that the expected superparamagnetic regime for weakly anisotropic isolated magnetic particles is drastically affected due to the interplay of surface/volume anisotropies and dipolar interactions. For the smallest particles (D = 4.8 nm), magnetocrystalline anisotropy is enhanced by surface spins and drives the system into a regime of ferromagnetically correlated clusters characterized by a temperature-dependent magnetic correlation length L mag which is experimentally accessible using magnetic SANS. For D = 8.6 nm particles, a superparamagnetic regime is recovered in a wide temperature range. We propose a model of interacting single-domain particles with axial anisotropy that accounts quantitatively for the observed behaviors in both magnetic regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Majetich, Y. Jin, Science 284, 470 (1999)

    Article  ADS  Google Scholar 

  2. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003)

    ADS  Google Scholar 

  3. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)

    Article  ADS  Google Scholar 

  4. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Noguès, Nature 423, 850 (2003)

    Article  ADS  Google Scholar 

  5. R.M. Lacroix, D. Don, S. Sun, Curr. Topics Med. Chem. 10, 1184 (2010)

    Article  Google Scholar 

  6. C. Kumar, F. Mohammad, Adv. Drug. Deliv. Rev. 63, 789 (2011)

    Article  Google Scholar 

  7. S. Laurent et al., Adv. Colloids Interface Sci. 166, 8 (2011)

    Article  Google Scholar 

  8. D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 42, 268 (2003)

    Article  Google Scholar 

  9. J.-N. Rebilly, T. Mallah, in Single-Molecule Magnets and Related Phenomena, Structure and Bonding (Springer-Verlag, Berlin, Heidelberg, 2006), Vol. 122, p. 103

  10. D.N. Woodruff, R.E.P. Winpenny, R.A. Layfield, Chem. Rev. 113, 5110 (2013)

    Article  Google Scholar 

  11. P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Phys. Rev. B 64, 144420 (2001)

    Article  ADS  Google Scholar 

  12. E. Amstad, M. Textor, R. Reimhult, Nanoscale 3, 2819 (2011)

    Article  ADS  Google Scholar 

  13. R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao, S.H. Sun, Adv. Mater. 22, 2729 (2010)

    Article  Google Scholar 

  14. J.F. Löffler, H.-B. Braun, W. Wagner, Phys. Rev. Lett. 85, 1990 (2000)

    Article  ADS  Google Scholar 

  15. R.P. Cowburn, M.E. Welland, Science 287, 1466 (2000)

    Article  ADS  Google Scholar 

  16. J.A. De Toro, S.S. Lee, D. Salazar, J.L. Cheong, P.S. Normile, P. Muñiz, J.M. Riveiro, M. Hillenkamp, F. Tournus, A. Tamion, P. Nordblad, Appl. Phys. Lett. 102, 183104 (2013)

    Article  ADS  Google Scholar 

  17. M.S. Andersson, J.A. De Toro, S.S. Lee, P.S. Normile, P. Nordblad, R. Mathieu, Phys. Rev. B 93, 054407 (2015)

    Article  ADS  Google Scholar 

  18. M.S. Andersson, R. Mathieu, S.S. Lee, P.S. Normile, G. Singh, P. Nordblad, J.A. De Toro, Nanotechnology 26, 475703 (2015)

    Article  Google Scholar 

  19. J. Mohapatra, A. Mitra, D. Bahadur, M. Aslam, J. Alloys Comp. 628, 416 (2015)

    Article  Google Scholar 

  20. V. Thiruvengadam, S. Vittaa, J. Appl. Phys. 119, 244312 (2016)

    Article  ADS  Google Scholar 

  21. D. Alba Venero, S.E. Rogers, S. Langridge, J. Alonso, M.L. Fdez-Gubieda, A. Svalov, L. Fernandez Barquin, J. Appl. Phys. 119, 143902 (2016)

    Article  ADS  Google Scholar 

  22. J.C. Denardin, A.L. Brandl, M. Knobel, P. Panissod, A.B. Pakhomov, H. Liu, X.X. Zhang, Phys. Rev. B 65, 064422 (2002)

    Article  ADS  Google Scholar 

  23. W.C. Nunes, L.M. Socolovsky, J.C. Denardin, F. Cebollada, A.L. Brandl, M. Knobel, Phys. Rev. B 72, 212413 (2005)

    Article  ADS  Google Scholar 

  24. J.M. Vargas, W.C. Nunes, L.M. Socolovsky, M. Knobel, D. Zanchet, Phys. Rev. B 72, 184428 (2005)

    Article  ADS  Google Scholar 

  25. A. Michels, C. Vecchini, O. Moze, K. Suzuki, P.K. Pranzas, J. Kohlbrecher, J. Weissmüller, Phys. Rev. B 74, 134407 (2006)

    Article  ADS  Google Scholar 

  26. V. Gadet et al., J. Am. Chem. Soc. 114, 9213 (1992)

    Article  Google Scholar 

  27. D.M. Pajerowski et al., Chem. Mat. 23, 3045 (2011)

    Article  Google Scholar 

  28. F.A. Frye et al., Polyhedron 26, 2281 (2007)

    Article  Google Scholar 

  29. O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 272, 704 (1996)

    Article  ADS  Google Scholar 

  30. A. Bleuzen et al., J. Am. Chem. Soc. 122, 6648 (2000)

    Article  Google Scholar 

  31. D. Brinzei, L. Catala, N. Louvain, G. Rogez, O. Stéphan, A. Gloterc, T. Mallah, J. Mater. Chem. 16, 2593 (2006)

    Article  Google Scholar 

  32. L. Catala, F. Volatron, D. Brinzei, T. Mallah, Inorg. Chem. 48, 3360 (2009)

    Article  Google Scholar 

  33. Y. Prado, L. Lisnard, D. Heurtiaux, G. Rogez, A. Gloter, O. Stéphan, N. Dia, E. Rivière, L. Catala, T. Mallah, Chem. Commun. 47, 1051 (2011)

    Article  Google Scholar 

  34. Y. Prado, S. Mazérat, E. Rivière, G. Rogez, A. Gloter, L. Catala, T. Mallah, Adv. Func. Mater. 24, 5402 (2014)

    Article  Google Scholar 

  35. K. Ridier, B. Gillon, G. André, G. Chaboussant, L. Catala, S. Mazérat, T. Mallah, J. Appl. Phys. 118, 114304 (2015)

    Article  ADS  Google Scholar 

  36. M.V. Avdeev, J. Mol. Liquids 189, 68 (2014)

    Article  Google Scholar 

  37. M.V. Avdeev, V.L. Aksenov, Physics-Uspekhi 53, 971 (2010)

    Article  ADS  Google Scholar 

  38. M.V. Avdeev, J. Appl. Cryst. 40, 56 (2007)

    Article  Google Scholar 

  39. R. Cywinski, J.F. Booth, R.D. Rainford, J. Phys. F 7, 2567 (1977)

    Article  ADS  Google Scholar 

  40. W. Wagner, A. Wiedenmann, W. Petry, A. Geibel, H. Gleiter, J. Mater. Res. 6, 2305 (1991)

    Article  ADS  Google Scholar 

  41. C. Bellouard, I. Mirebeau, M. Hennion, Phys. Rev. B 53, 5570 (1996)

    Article  ADS  Google Scholar 

  42. J. Weissmüller, A. Michels, J.G. Baker, A. Wiedenmann, U. Erb, R.D. Shull, Phys. Rev. B 63, 214414 (2001)

    Article  ADS  Google Scholar 

  43. J.F. Löffler, H.B. Braun, W. Wagner, G. Kostorz, A. Wiedenmann, Phys. Rev. B 71, 134410 (2005)

    Article  ADS  Google Scholar 

  44. M. Sachan et al., Appl. Phys. Lett. 92, 152503 (2008)

    Article  ADS  Google Scholar 

  45. D.F. Farrell, J. Magn. Magn. Mat. 303, 318 (2006)

    Article  ADS  Google Scholar 

  46. A. Michels, R.N. Viswanatah, J. Weissmüller, Europhys. Lett. 64, 43 (2003)

    Article  ADS  Google Scholar 

  47. K. Butter, A. Hoell, A. Wiedenmann, A.V. Petukhov, G.J. Vroege, J. Appl. Cryst. 37, 847 (2004)

    Article  Google Scholar 

  48. A. Wiedenmann et al., J. Phys.: Cond. Matter 18, 2713 (2006)

    ADS  Google Scholar 

  49. S. Disch, E. Wetterskog, R.P. Hermann, A. Wiedenmann, U. Vainio, G. Salazar-Alvarez, L. Bergström, T.Brückel, New J. Phys. 14, 013025 (2012)

    Article  ADS  Google Scholar 

  50. C. Kittel, Rev. Mod. Phys. 21, 541 (1949)

    Article  ADS  Google Scholar 

  51. J.W.F. Brown , J. Appl. Phys. 39, 993 (1968)

    Article  ADS  Google Scholar 

  52. S.A. Majetich, M. Sachan, J. Phys. D 39, 407 (2006)

    Article  ADS  Google Scholar 

  53. J.F. Löffler, H.B. Braun, W. Wagner, J. Appl. Phys. 85, 5187 (1999)

    Article  ADS  Google Scholar 

  54. J.F. Löffler, H.B. Braun, W. Wagner, G. Kostorz, A. Wiedenmann, Mater. Sci. Eng. A 304, 1050 (2001)

    Article  Google Scholar 

  55. F. Bodker, S. Mørup, S. Linderoth, Phys. Rev. Lett. 72, 282 (1994)

    Article  ADS  Google Scholar 

  56. F. Bodker, S. Mørup, Europhys. Lett. 52, 217 (2000)

    Article  ADS  Google Scholar 

  57. F. Bodker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Phys. Rev. B, 61 6826 (2000)

    Article  ADS  Google Scholar 

  58. E.M. Chudnovsky et al., Phys. Rev. B 33, 251 (1986)

    Article  ADS  Google Scholar 

  59. S. Ferlay et al., Inorg. Chem. 38, 229 (1999)

    Article  Google Scholar 

  60. T. Mallah, C. Auberger, M. Verdaguer, P. Veillet, J. Chem. Soc. Chem. Commun. 61, (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Chaboussant.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2017-70534-9

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridier, K., Gillon, B., Chaboussant, G. et al. Individual-collective crossover driven by particle size in dense assemblies of superparamagnetic nanoparticles. Eur. Phys. J. B 90, 77 (2017). https://doi.org/10.1140/epjb/e2017-70534-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70534-9

Keywords

Navigation