Skip to main content
Log in

Single-step scalable conversion of waste natural oils to carbon nanowhiskers and their interaction with mammalian cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Waste cooking oil has daily deliberate hazardous effects on human health due to consumption of re-cooked oil and on the environment from disposal of the waste oil. These hazards can be controlled if there are ways to economically convert the waste oils into industrially relevant materials. Large-scale controlled catalytic conversion of the waste natural oils to carbon nanowhiskers (CNWs; diameter: 98–191 nm, length: ≤2 μm) was achieved by a one-pot, environmentally friendly process. The no-cost CNWs consist of carbon spirals with spacing between two adjacent layers at 3.1 ± 0.2 nm and arranged perpendicular to the whisker axis. The reactions were performed inside a sealed container at 500–850 °C and autogenic pressure for 4–10 h. It was demonstrated that the gaseous pressure from the decomposition of the fatty acids was crucial for formation of the semi-graphitic filamentous structures. The dilute acid-washed catalyst free CNWs were found to be negligibly toxic to the mammalian cells and can be localized inside the cell nucleus. The cellular internalization studies of the fluorescent CNWs demonstrated their viability as potential delivery vehicles into the mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afre RA, Soga T, Jimbo T, Kumar M, Ando Y, Sharon M (2006) Vertically aligned carbon nanotubes at different temperatures by spray pyrolysis techniques. Int J Mod Phys B 20:4965–4972

    Article  CAS  Google Scholar 

  • Awasthi K, Kumar R, Raghubangshi H, Awasthi S, Pandey R, Pandey TP, Srivastava ON (2011) Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials. Bull Mater Sci 24:607–614

    Article  Google Scholar 

  • Bae SD, Lee CW, Kang LS, Sakoda A (2006) Preparation, characterization, and application of activated carbon membrane with carbon whiskers. Desalination 202:247–252

    Article  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  Google Scholar 

  • Baloch KH, Voskanian N, Bronsgeest M, Cummings J (2012) Remote Joule heating by a carbon nanotube. Nat Nanotechnol 7:316–319

    Article  CAS  Google Scholar 

  • Bennema P (1984) Spiral growth and surface roughening: developments since Burton, Cabrera and Frank. J Cryst Growth 69:182–197

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Perelshtein I, Moshe O, Rich DH, Gedanken A (2008a) One-step solvent-free synthesis and characterization of Zn1−x Mn x Se@ C nanorods and nanowires. Adv Funct Mater 18:1641–1653

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Pucci A, Zitoun D, Gedanken A (2008b) One-pot fabrication and magnetic studies of Mn-doped TiO2 nanocrystals with an encapsulating carbon layer. Nanotechnology 19(49):495711

    Google Scholar 

  • Bhattacharyya S, Estrin Y, Moshe O, Rich DH, Solovyov L, Gedanken A (2009a) Highly luminescent Zn x Cd1−x Se/C core/shell nanocrystals: large scale synthesis, structural and cathodoluminescence studies. ACS Nano 3:1864–1876

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Zitoun D, Estrin Y, Moshe O, Rich DH, Gedanken A (2009b) A one-step, template-free synthesis, characterization, optical and magnetic properties of Zn1−x Mn x Te nanosheets. Chem Mater 21:326–335

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Estrin Y, Rich DH, Zitoun D, Koltypin Y, Gedanken A (2010) Luminescent and ferromagnetic CdS:Mn2+/C core–shell nanocrystals. J Phys Chem C 114:22002–22011

    Article  CAS  Google Scholar 

  • Bo X, Zhu L, Wang G, Guo L (2012) Template-free synthesis of rectangular mesoporous carbon nanorods and their application as a support for Pt electrocatalysts. J Mater Chem 22:5758–5763

    Article  CAS  Google Scholar 

  • Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  CAS  Google Scholar 

  • De Mattos FCG, De Souza JADS, Cotrim ABDA, De MacEdo JL, Dias JA, Dias SCL, Ghesti GF (2012) Lewis acid/surfactant rare earth trisdodecylsulfate catalysts for biodiesel production from waste cooking oil. Appl Catal A Gen 423–24:1–6

    Article  Google Scholar 

  • Durham LJ, Wurster CF Jr, Mosher HS (1958) The mechanism for the thermal decomposition of n-butyl hydroperoxide and n-butyl 1-hydroxybutyl peroxide. J Am Chem Soc 80:332–337

    Article  CAS  Google Scholar 

  • Fattah TA, Siochi EJ, Crooks RE (2006) Pyrolytic synthesis of carbon nanotubes from sucrose on a mesoporous silicate. Fullerness Nanotub Carbon Nanostruct 14:585–594

    Article  Google Scholar 

  • Gayen RN, Pal AK (2010) Growth of carbon nanofibers on aligned zinc oxide nanorods and their field emission properties. Appl Surf Sci 256:6172–6178

    Article  CAS  Google Scholar 

  • Hallam PM, Riehl BL, Riehl BD, Banks CE (2011) Solid carbon nanorod whiskers: application to the electrochemical sensing of biologically relevant molecules. RSC Adv 1:93–99

    Article  CAS  Google Scholar 

  • Helveg S, Sehested J, Nielsen JRR (2011) Whisker carbon in perspective. Catal Today 178:42–46

    Article  CAS  Google Scholar 

  • Huang BR, Lin TC, Chu JP, Chen YC (2012a) Long-term stability of a horizontally-aligned carbon nanotube field emission cathode coated with a metallic glass thin film. Carbon 50:1619–1624

    Article  CAS  Google Scholar 

  • Huang JQ, Zhang Q, Zhao MQ, Wei F (2012b) A review of the large-scale production of carbon nanotubes: the practice of nanoscale process engineering. Chin Sci Bull 57:157–166

    Article  CAS  Google Scholar 

  • Ishimatsu S, Hori H, Kasai T, Ogami A, Morimoto Y, Oyabu T, Tanaka I (2009) Biological effect of carbon graphite whisker in rat lung by long-term inhalation. Inhalation Toxicol 8:668–673

    Article  Google Scholar 

  • Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860

    Article  CAS  Google Scholar 

  • Kang Z, Wang E, Mao B, Su Z, Chen L, Xu L (2005) Obtaining carbon nanotubes from grass. Nanotechnology 16:1192–1195

    Article  CAS  Google Scholar 

  • Kehrer VJ Jr, Leidheiser H Jr (1954) The catalytic decomposition of carbon monoxide on large metallic single crystals. J Phys Chem 58:550–555

    Article  CAS  Google Scholar 

  • Kidena K, Kamiyama Y, Nomura M (2008) A possibility of the production of carbon nanotubes from heavy hydrocarbons. Fuel Process Technol 89:449–454

    Article  CAS  Google Scholar 

  • Kumar R, Tiwari R, Srivastava ON (2011) Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale Res Lett 6:92

    Article  CAS  Google Scholar 

  • Molaei DA, Ghasemi M (2012) Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Process Technol 97:45–51

    Article  Google Scholar 

  • Mopung S (2011) Occurrence of carbon nanotube from banana peel activated carbon mixed with mineral oil. Int J Phys Sci 6:1789–1792

    Google Scholar 

  • Moreno MCMM, Olivares DM, Lopez FJA, Adelantado JVG, Reig FB (1999) Analytical evaluation of polyunsaturated fatty acids degradation during thermal oxidation of edible oils by Fourier transform infrared spectroscopy. Talanta 50:269–275

    Article  Google Scholar 

  • Noked M, Okashy S, Zimrin T, Aurbach D (2012) Composite carbon nanotube/carbon electrodes for electrical double-layer super capacitors. Angew Chem Int Ed 51:1568–1571

    Article  CAS  Google Scholar 

  • Nordhei C, Mathisen K, Safonova O, Wv Beek, Nicholson DG (2009) Decomposition of CO2 at 500 °C over reduced iron, cobalt, nickel, and zinc ferrites: a combined XANES-XRD study. J Phys Chem C 113:19568–19577

    Article  CAS  Google Scholar 

  • Pelletier V, Bhattacharyya S, Knoke I, Forohar F, Bichay M, Gogotsi Y (2010) Copper azide confined inside templated carbon nanotubes. Adv Funct Mater 20:3168–3174

    Article  CAS  Google Scholar 

  • Pol VG, Thiyagrajan P (2010) Remediating plastic waste into carbon nanotubes. J Environ Monit 12:455–459

    Article  CAS  Google Scholar 

  • Pol SV, Pol VG, Sherman D, Gedanken A (2009) A solvent free process for the generation of strong, conducting carbon spheres by the thermal degradation of waste polyethylene terephthalate. Green Chem 11:448–451

    Article  CAS  Google Scholar 

  • Ritikos R, Rahman SA, Gani SMA, Muhamad MR, Yap YK (2011) Catalyst-free formation of vertically-aligned carbon nanorods as induced by nitrogen incorporation. Carbon 49:1842–1848

    Article  CAS  Google Scholar 

  • Seppanen CM, Saari Csallany A (2006) The effect of intermittent and continuous heating of soybean oil at frying temperature on the formation of HNE and other alpha-, beta-unsaturated hydroxyaldehydes. J Am Oil Chem Soc 83:121–127

    Article  CAS  Google Scholar 

  • Setlur AA, Dorothy SP, Dal JY, Chang RPH (2000) A promising pathway to make multiwalled carbon nanotubes. Appl Phys Lett 76:3008–3010

    Article  CAS  Google Scholar 

  • Singh P, Kulkarni MV, Gokhale SP, Chikkali SH, Kulkarni CV (2012) Enhancing the hydrogen storage capacity of Pd-functionalized multi-walled carbon nanotubes. Appl Surf Sci 258:3405–3409

    Article  CAS  Google Scholar 

  • Singhal R, Orynbayeva Z, Sundaram RVK, Niu JJ, Bhattacharyya S, Vitol E, Schrlau M, Papazoglou E, Friedman G, Gogotsi Y (2011) Multifunctional carbon-nanotube cellular endoscopes. Nat Nanotechnol 6:57–64

    Article  CAS  Google Scholar 

  • Suriani AB, Md. Nor R, Rusop M (2010) Vertically aligned carbon nanotubes synthesized from waste cooking palm oil. J Ceram Soc Japan 118:963–968

    Article  CAS  Google Scholar 

  • Teng M-K, Usman N, Frederick CA, Wang AH–J (1988) The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucleic Acids Res 16:2671–2690

    Article  CAS  Google Scholar 

  • Zarei H, Ghourchian H, Eskandari K, Zeinali M (2012) Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe3O4 as a platform for electrochemical immunoassay. Anal Biochem 421:446–453

    Article  CAS  Google Scholar 

  • Zou G, Lu J, Wang D, Xu L, Qian Y (2004) High-yield carbon nanorods obtained by a catalytic copyrolysis process. Inorg Chem 43:5432–5435

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AD and AS thank the University Grants Commission (UGC), New Delhi and PD thanks IISER Kolkata for their fellowships. PD and SM acknowledge the help of Ritabrata Ghosh for confocal microscopy. Start-up research funding from IISER Kolkata is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Bhattacharyya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, A., Dutta, P., Sadhu, A. et al. Single-step scalable conversion of waste natural oils to carbon nanowhiskers and their interaction with mammalian cells. J Nanopart Res 15, 1808 (2013). https://doi.org/10.1007/s11051-013-1808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1808-x

Keywords

Navigation