Skip to main content

Nanocatalysts for Environmental Benign Biofuel Production

  • Reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology
  • 32 Accesses

Abstract

The excessive use of petrochemical resources for energy purpose causes environmental pollution. Due to exhaustion of non-renewable petrochemical reserves and unpredictable enhancement of price of petrochemical fuels, there is tremendous need of alternative renewable fuels of biological origin to replace petrochemicals. Low carbon neutrality, inexhaustibility, and accessibility at fair prices are the prominent features of an alternative biobased fuel. Biodiesel is a sustainable and ecofriendly fuel produced by transesterification processes using different types of homogeneous, heterogeneous catalyst and in non-catalytic conditions from waste cooking oil, animal fats, and vegetable oils. Because of their low cost and ease of availability, homogeneous catalysts are promising materials for biodiesel synthesis in industry. However, they have a corrosion problem and are difficult to separate from the product after the reaction. To address this, many heterogeneous catalysts have been used for biodiesel production with comparable efficiency to that of the homogeneous catalyst and the catalyst can be easily isolated from the product. Recently, several heterogeneous nanocatalysts are in trend for transesterification, in view of exceptional properties such as high activity, excellent catalytic performance, easy recovery, and reusability. Among various nanocatalysts, metal oxide-based nanocatalysts, nanohydrotalcites, magnetic nanocatalysts, and nanozeolites have tremendous potential for catalyzing transesterification of various plant-based oils to produce biodiesel with high yield. In this chapter, we represented biodiesel production using different catalysts and also mentioned optimum condition for various feedstocks. This chapter also focuses on utilization of various nanocatalysts, their effects, and methodologies adopted for biodiesel production. Magnetic nanocatalyst is found to be the promising nanocatalyst for biodiesel synthesis due to high catalytic activity and multiple reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DG:

Diglyceride

FAAE:

Fatty acid alkyl ester

FAME:

Fatty acid methyl ester

FFA:

Free fatty acid

LDH:

Layered double hydroxides

MG:

Monoglyceride

TG:

Triglyceride

WCO :

Waste cooking oil

References

  • Alaei S, Haghighi M, Toghiani J, Vahid BR (2018) Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind Crops Prod 117:322–332

    Article  CAS  Google Scholar 

  • Al-Ani A, Darton RJ, Sneddon S, Zholobenko V (2018) Nanostructured zeolites: The introduction of intracrystalline mesoporosity in basic Faujasite-type catalysts. ACS Appl Nano Mater 1:310–318

    Article  CAS  Google Scholar 

  • Alves MB, Medeiros FCM, Sousa MH, Rubim JC, Suarez PAZ (2014) Cadmium and tin magnetic nanocatalysts useful for biodiesel production. J Braz Chem Soc 25:2304–2313

    CAS  Google Scholar 

  • Amalia S, Khalifah SN, Baroroh M, Muiz A, Rahmatullah A, Aini N, Aqli-Hs MR, Umam MN (2019) Biodiesel production from castor oil using heterogeneous catalyst KOH/zeolite of natural zeolite Bandung Indonesia. AIP Conf. Proc. 2120, 080016-1–080016-7

    Google Scholar 

  • Ambursa MM, Ali TH, Voon LH, Sudarsanam P, Bhargava SK, Abd-Hamid SB (2016) Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu-Ni catalysts supported on metal oxides. Fuel 180:767–776

    Article  CAS  Google Scholar 

  • Ambursa MM, Sudarsanam P, Voon LH, Abd-Hamid SB, Bhargava SK (2017) Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Proc Technol 162:87–97

    Article  CAS  Google Scholar 

  • Amoah J, Ho SH, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A (2016) Converting oils high in phospholipids to biodiesel using immobilized Aspergillus oryzae whole-cell biocatalysts expressing Fusarium heterosporum lipase. Biochem Eng J 105:10–15

    Article  CAS  Google Scholar 

  • Arzamendi G, Campo I, Arguinarena E, Sanchez M, Montes M, Gandia LM (2007) Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: comparison with homogeneous NaOH. Chem Eng J 134:123–130

    Article  CAS  Google Scholar 

  • Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2013) The effects of catalysts in biodiesel production: a review. J Ind Eng Chem 19:14–26

    Article  CAS  Google Scholar 

  • Bajaj A, Lohan P, Jha N, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62(1):9–14

    Article  CAS  Google Scholar 

  • Balakrishnan M, Sacia ER, Bell AT (2014) Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules. ChemSusChem 7(4):1078–1085

    Article  CAS  Google Scholar 

  • Bankovic-Ilic IB, Miladinovic MR, Stamenkovic OS, Veljkovic VB (2017) Application of nano CaO-based catalysts in biodiesel synthesis. Renew Sustain Energy Rev 72:746–760

    Article  CAS  Google Scholar 

  • Baskar G, Gurugulladevi A, Nishanthini T, Aiswarya R, Tamilarasan K (2017) Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst. Renew Energy 103:641–646

    Article  CAS  Google Scholar 

  • Bergamasco J, de Araujo MV, de Vasconcellos A, Luizon Filho RA, Hatanaka RR, Giotto MV, Aranda DAG, Nery JG (2013) Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres. Biomass Bioenergy 59(2013):218–233

    Article  CAS  Google Scholar 

  • Birla A, Singh B, Upadhyay SN, Sharma YC (2012) Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour Technol 106:95–100

    Article  CAS  Google Scholar 

  • Brito A, Borges ME, Otero N (2007) Zeolite Y as a heterogeneous catalyst in biodiesel fuel production from used vegetable oil. Energy Fuels 21:3280–3283

    Article  CAS  Google Scholar 

  • Brucato A, Busciglio F, Di Stefano F, Grisafi G, Micale, Scargiali F (2010) High temperature solid catalized transesterification for biodiesel production. Chem Eng Trans 19:31–36

    Google Scholar 

  • Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:1–6

    Google Scholar 

  • Changmai B, Vanlalveni C, Ingle AP, Bhagat R, Rokhum L (2020) Widely used catalysts in biodiesel production: a review. RSC Adv 10:41625–41679

    Article  CAS  Google Scholar 

  • Chelladurai K, Rajamanickam M (2014) Environmentally benign neem biodiesel synthesis using Nano-Zn-Mg-Al hydrotalcite as solid base catalysts. J Catal 2014:326–575

    Google Scholar 

  • Chen KT, Wang JX, Dai YM, Wang PH, Liou CY, Nien CW, Wu JS, Chen CC (2013) Rice husk ash as a catalyst precursor for biodiesel production. J Taiwan Inst Chem Eng 44(4):622–629

    Article  CAS  Google Scholar 

  • Chen SY, Lao-ubol S, Mochizuki T, Abe Y, Toba M, Yoshimura Y (2014) Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids. Bioresour Technol 157:346–350

    Article  CAS  Google Scholar 

  • Dawodu FA, Ayodele OO, Bolanle-Ojo T (2014) Biodiesel production from Sesamum indicum L. seed oil: An optimization study. Egypt J Pet 23(2):191–199

    Article  Google Scholar 

  • de Vasconcellos A, Miller AH, Aranda DAG, Nery JG (2018) Biocatalysts based on nanozeolite-enzyme complexes: Effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock. Colloids Surf B Biointerfaces 165:150–157

    Article  Google Scholar 

  • Deng X, Fang Z, Liu YH, Yu CL (2011) Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36:777–784

    Article  CAS  Google Scholar 

  • Di Serio M, Cozzolino M, Giordano M, Tesser R, Patrono P (2007) From homogeneous to heterogeneous catalysts in biodiesel production. Ind Eng Chem Res 46:6379–6384

    Article  Google Scholar 

  • Dias APS, Bernardo J, Felizardo P, Correia MJN (2012) Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites. Energy 41:344–353

    Article  Google Scholar 

  • Faria EA, Marques JS, Dias IM, Andrade RDA, Suareza PAZ, Prado AGS (2009) Nanosized and reusable SiO2/ZrO2 catalyst for highly efficient biodiesel production by soybean transesterification. J Braz Chem Soc 20:1732–1737

    Article  CAS  Google Scholar 

  • Feyzi M, Norouzi L (2016) Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production. Renew Energy 94:579–586

    Article  CAS  Google Scholar 

  • Gao L, Teng G, Lv J, Xiao G (2010) Biodiesel synthesis catalyzed by the KF/Ca-Mg-Al hydrotalcite base catalyst. Energy Fuels 24:646–651

    Article  CAS  Google Scholar 

  • Gardy J, Hassanpour A, Laia X, Ahmed MH (2016) Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl Catal A Gen 527:81–95

    Article  CAS  Google Scholar 

  • Gardy J, Hassanpour A, Laia X, Ahmed MH, Rehan M (2017) Biodiesel production from used cooking oil using a novel surface functionalized TiO2 nano-catalyst. Appl Catal B Environ 207:297–310

    Article  CAS  Google Scholar 

  • Ghalandari A, Taghizadeh M, Rahmani M (2019) Statistical optimization of the biodiesel production process using a magnetic core-mesoporous shell KOH/Fe3O4@g-Al2O3 nanocatalyst. Chem Eng Technol 42:89–99

    Article  CAS  Google Scholar 

  • Hama S, Noda H, Kondo A (2018) How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr Opin Biotechnol 50:57–64

    Article  CAS  Google Scholar 

  • Hassani M, Najafpour GD, Mohammadi M, Rabiee M (2014) Preparation, characterization and application of zeolite-based catalyst for production of biodiesel from waste cooking oil. J Sci Ind Res 73:129–133

    CAS  Google Scholar 

  • Helwania Z, Othman MR, Aziz N, Fernando WJN, Kim J (2009) Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol 90(12):1502–1514

    Google Scholar 

  • Hossain BMS, Mazen MA (2010) Effects of catalyst types and concentrations on biodiesel production from waste soybean oil biomass as renewable energy and environmental recycling process. Aust J Crop Sci 4(7):550–555

    CAS  Google Scholar 

  • Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production. Appl Energy 88:2685–2690

    Article  CAS  Google Scholar 

  • Hu S, Wen L, Wang Y, Zheng X, Han H (2012) Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst. Bioresour Technol 123:413–418

    Article  CAS  Google Scholar 

  • Isnaini IA, Suryana R (2019) Biodiesel production from castor oil using heterogeneous catalyst KOH/Zeolite of natural zeolite Bandung Indonesia. AIP Conf Proc 2120:080016

    Article  Google Scholar 

  • Javidialesaadi A, Raeissi S (2013) Biodiesel production from high free fatty acid-content oils: experimental investigation of the pretreatment step. APCBEE Procedia 5:474–478

    Article  CAS  Google Scholar 

  • Jimenez-Morales I, Santamaría-Gonzalez J, Maireles-Torres P, Jimenez-L’opez A (2011) Aluminum doped SBA-15 silica as acid catalyst for the methanolysis of sunflower oil. Applied Catalysis B: Environmental 105(1–2):199–205

    Google Scholar 

  • Kartika IA, Yani M, Ariono D, Evon P, Rigal L (2013) Biodiesel production from jatropha seeds: Solvent extraction and in situ transesterification in a single step. Fuel 106:111–117

    Article  Google Scholar 

  • Kim KH, Lee OK, Lee EY (2018) Nano-immobilized biocatalysts for biodiesel production from renewable and sustainable resources. Catalysts 8:68

    Article  Google Scholar 

  • Kulkarni MG, Dalai AK (2006) Waste cooking oils an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  • Kumar D, Sharma S, Srivastava N, Shukla S, Gaurav K (2018) Advancement in the utilization of nanocatalyst for transesterification of triglycerides. J Nanosci Tech 4:374–379

    Article  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518

    Article  CAS  Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095

    Article  CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 1:1–15

    Article  Google Scholar 

  • Madhuvilakku R, Piraman S (2013) Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour Technol 150:55–59

    Article  CAS  Google Scholar 

  • Mallesham B, Sudarsanam P, Reddy BM (2014) Production of biofuel additives from esterification and acetalization of bioglycerol over SnO2-based solid acids. Ind Eng Chem Res 53(49):18775–707 18785

    Google Scholar 

  • Muthu H, Selvabala VS, Varathachary TK, Selvaraj DK, Nandagopal J, Subramanian S (2010) Synthesis of biodiesel from neem oil using sulfated zirconia via transesterification. Brazilian J Chem Eng 27(4):601–608

    Article  CAS  Google Scholar 

  • Nahar GA (2010) Hydrogen rich gas production by the auto thermal reforming of biodiesel (FAME) for utilization in the solid-oxide fuel cells: a thermodynamic analysis. Int J Hydrogen Energy 35:8891–8911

    Article  CAS  Google Scholar 

  • Nakatani H, Takamori K, Takeda K, Sakugawa H (2009) Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour Technol 100:1510–1513

    Article  CAS  Google Scholar 

  • Narasimharao K, Lee A, Wilson K (2007) Catalysts in production of biodiesel: a review. J Biobased Mater Bioenergy 1:1–12

    Article  Google Scholar 

  • Nas B, Berktay A (2007) Energy potential of biodiesel generated from waste cooking oil: an environmental approach. Energy Sour B Econ Plan Policy 2:63–71

    Article  CAS  Google Scholar 

  • Obadiah A, Kannan R, Ravichandran P, Ramasubbu A, Kumar SV (2012) Nano hydrotalcite as a novel catalyst for biodiesel conversion. Dig J Nanomater Biostruct 7:321–327

    Google Scholar 

  • Porwal J, Bangwal D, Garg MO, Kaul S, Harvey AP, Lee JGM, Kasim FM, Eterigho EJ (2012) Reactive-extraction of pongamia seeds for biodiesel production. J Sci Ind Res 71(12):822–828

    CAS  Google Scholar 

  • Prabu M, Manikandan M, Kandasamy P, Kalaivani PR, Rajendiran N, Raja T (2019) Synthesis of biodiesel using the Mg/Al/Zn hydrotalcite/SBA-15 nanocomposite catalyst. ACS Omega 4:3500–3507

    Article  CAS  Google Scholar 

  • Pradhan S, Meher LC, Naik SN, Sahoo PK (2010) Oil content and fatty acid composition of Jatropha curcas. Seeds over Indian domain and biodiesel preparation. J Lipid Sci Technol 42(1):19–23

    Google Scholar 

  • Qiu F, Li Y, Yang D, Li X, Sun P (2011) Heterogeneous solid base nanocatalyst: Preparation, characterization and application in biodiesel production. Bioresour Technol 102:4150–4156

    Article  CAS  Google Scholar 

  • Reddy CRV, Oshel R, Verkade JG (2006) Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy Fuels 20:1310–1314

    Article  CAS  Google Scholar 

  • Saeedi M, Fazaeli R, Aliyan H (2016) Nanostructured sodium–zeolite imidazolate framework (ZIF-8) doped with potassium by sol-gel processing for biodiesel production from soybean oil. J Sol-Gel Sci Technol 77:404–415

    Article  CAS  Google Scholar 

  • Sagiroglu A, Selen I, Ozcan M, Paluzar H, Toprakkiran N (2011) Comparison of biodiesel productivities of different vegetable oils by acidic catalysis. Chem Ind Chem Eng Q 17:53–58

    Article  CAS  Google Scholar 

  • Salimi Z, Hosseini SA (2019) Study and optimization of conditions of biodiesel production from edible oils using ZnO-BiFeO3 nano magnetic catalyst. Fuel 239:1204–1212

    Article  CAS  Google Scholar 

  • Sharma YC, Singh B (2008) Development of biodiesel from karanja, a tree found in rural India. Fuel 67:1740–1742

    Article  Google Scholar 

  • Shekoohi K, Hosseini FS, Haghighi AH, Sahrayian A (2017) Synthesis of some Mg/Co-Al type nano hydrotalcites and characterization. MethodsX 4:86–94

    Article  Google Scholar 

  • Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J (2010) Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl Energy 87(8):2589–2596

    Article  CAS  Google Scholar 

  • Silitonga AS, Chyuan H, Mahlia TMI, Masjuki HH, Chong WT (2014) Biodiesel conversion from high FFA crude jatropha curcas, calophyllum inophyllum and ceiba pentandra oil. Energy Procedia 61:480–483

    Article  CAS  Google Scholar 

  • Silva GF, Camargo FL, Ferreira ALO (2011) Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol. Fuel Process Technol 92(3):407–413

    Article  CAS  Google Scholar 

  • Simões AS, Ramos L, Freitas L, Santos JC, Zanin GM, De Castro HF (2015) Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE) in a solvent-free system. Biofuel Res J 6(2015):242–247

    Article  Google Scholar 

  • Stern R, Hillion G, Rouxel JJ, Leporq S (1999) Process for the production of esters from vegetable oils or animal oils alcohols, fatty alcohols and derivatives. US Patent 5:908–946

    Google Scholar 

  • Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47:8349–8402

    Article  CAS  Google Scholar 

  • Sun C, Qiu F, Yang D, Ye B (2014) Preparation of biodiesel from soybean oil catalyzed by Al-Ca hydrotalcite loaded with K2CO3 as heterogeneous solid base catalyst. Fuel Process Technol 126:383–391

    Article  CAS  Google Scholar 

  • Tahvildari K, Anaraki YN, Fazaeli R, Mirpanji S, Delrish E (2015) The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. J Environ Health Sci Eng 13:73

    Article  Google Scholar 

  • Talha NS, Sulaiman S (2016) Overview of catalysts in biodiesel production ARPN. J Eng Appl Sci 11:439–448

    CAS  Google Scholar 

  • Thanh LT, Sadanaga Y, Takenaka N, Maeda Y, Bandow H, Okitsu K (2010) Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresource Technol 101:639–645

    Article  CAS  Google Scholar 

  • Varghese R, Jose S, Joyprabu H, Johnson I (2017) Ultrasonication assisted production of biodiesel from sunflower oil by using CuO: Mg heterogeneous nano catalyst. IOP Conf Ser Mat Sci Eng 225:1–5

    Google Scholar 

  • Viriya-empikul N, Krasae P, Nualpaeng W, Yoosuk B, Faungnawakij K (2012) Biodiesel production over Ca-based solid catalysts derived from industrial wastes. Fuel 92(1):239–244

    Article  CAS  Google Scholar 

  • Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH (2015) Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J Phys Chem C 119:26020–26028

    Article  CAS  Google Scholar 

  • Wei Z, Xu C, Li B (2009) Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour Technol 100:2883–2885

    Article  CAS  Google Scholar 

  • Wen L, Wang Y, Lu D, Hu S, Han H (2010) Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89:2267–2271

    Article  CAS  Google Scholar 

  • Yoosuk B, Udomsap P, Puttasawat B, Krasae P (2010) Modification of calcite by hydration–dehydration method for heterogeneous biodiesel production process: The effects of water on properties and activity. Chem Eng J 162:135–141

    Article  CAS  Google Scholar 

  • Zakaria R, Harvey AP (2012) Direct production of biodiesel from rapeseed by reactive extraction/in situ transesterification. Fuel Process Technol 102:53–60

    Article  CAS  Google Scholar 

  • Zhang X, Wang D, Ma J, Wei W (2017) Fluorinated Mg–Al hydrotalcites derived basic catalysts for transesterification of glycerol with dimethyl carbonate. Catalysis Lett 147:1181–1196

    Article  CAS  Google Scholar 

  • Zu Y, Tang J, Zhu W, Zhang M, Liu G, Liu Y, Zhang W, Jia M (2011) Graphite oxide-supported CaO catalysts for transesterification of soybean oil with methanol. Bioresour Technol 102:8939–8944

    Article  CAS  Google Scholar 

  • Zuliani A, Ivars F, Luque R (2018) Advances in nanocatalysts design for biofuels production. Chem Cat Chem 10:1968–1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhalaxmi Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pradhan, S., Saha, C., Parida, S., Sushma (2023). Nanocatalysts for Environmental Benign Biofuel Production. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-16101-8_19

Download citation

Publish with us

Policies and ethics