Skip to main content
Log in

Multiferroic properties of Tb-doped BiFeO3 nanowires

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoscale, multifunctional, multiferroic materials possess strong magnetoelectric coupling (ME), open exciting multitudinous ways for designing future nanoelectronic and spintronic device applications. Bulk nanowires (100 nm), pure, and Tb-doped BiFeO3 multiferroic nanowires (20 nm) have been synthesized by colloidal dispersion template-assisted technique. The effects of Tb-doping and size of synthesized nanowires on structural, electrical, magnetic, dielectric, and magnetodielectric properties have been investigated. X-ray diffraction study reveals that doping of Tb in BiFeO3 nanowires leads to structural transformation from rhombohedral to orthorhombic. X-ray photoemission analysis confirms the +3 oxidation state of Fe and high purity of samples. Bulk nanowires exhibit antiferromagnetic characteristics, whereas the Tb-doped BiFeO3 nanowires show ferromagnetic character. Moreover, with increase in Tb concentration, the saturation magnetization increases. Temperature-dependent magnetization study suggests their size-dependent ferro and ferri-magnetic behavior. Polarization versus electric field (P–E) study reveals that pure BiFeO3 nanowires possess elliptical loop; however, doping of Tb results in rectangular loop— portentous good ferroelectric properties. All synthesized samples exhibit frequency-dependent dielectric constant which decreases with increase in frequency and remains fairly constant at higher frequencies. Leakage current density decreases with increase in Tb concentration, and has been found to be three orders of magnitude less than those of bulk BiFeO3 nanowires. The ME coupling in synthesized nanowires was estimated by measuring magnetodielectric. A very high value of ME, 7.2 %, has been found for 15 % Tb-doped BiFeO3 nanowires. In this communication, we, for the first time, report new cue on size-dependent Tb-doped BiFeO3 nanowires, which may be further used to explore its technological device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bhushan B, Basumallick A, Vasanthacharya NY, Kumar S, Das D (2010) Sr induced modification of structural, optical and magnetic properties in Bi1−x Sr x FeO3 (x = 0, 001, 003, 005 and 007) multiferroic nanoparticles. Solid State Sci 12:1063–1069

    Article  CAS  Google Scholar 

  • Bing L, Binbin H, Zuliang D (2011) Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires. Chem Commun 47:8166–8168

    Article  Google Scholar 

  • Cao G (2004) Nanostructures and nanomaterials: synthesis, properties, and applications. World Scientific, Imperial College Press, London

  • Catalan G (2006) Magnetocapacitance without magnetoelectric coupling. Appl Phys Lett 88:102902

    Article  Google Scholar 

  • Cavdar S, Koralay H, Tugluoglu N, Gunen A (2005) Frequency-dependent dielectric characteristics of Tl–Ba–Ca–Cu–O bulk superconductor. Supercond Sci Technol 18:1204–1208

    Article  CAS  Google Scholar 

  • Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442(17):759–765

    Article  CAS  Google Scholar 

  • Gao F, Yuan Y, Wang KF, Chen XY, Chen F, Liu JM, Ren ZF (2006) Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl Phys Lett 89:102506

    Article  Google Scholar 

  • Guo R, Fang L, Dong W, Zheng F, Shen M (2010) Enhanced photocatalytic activity and ferromagnetism in Gd-doped BiFeO3 nanoparticles. J Phys Chem C 144:21390–21396

    Article  Google Scholar 

  • Hench LL, West JL (1990) Principles of electronic Ceramic. Wiley, New York

    Google Scholar 

  • Jaiswal A, Das R, Vivekanand K, Abraham P, Adyanthaya S, Poddar P (2010) Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J Phys Chem C 114:2108–2115

    Article  CAS  Google Scholar 

  • Khomchenko VA, Shvartsman VV, Borisov P, Kleemann W, Kiselev DA, Bdikin IK, Vieira JM, Kholkin AL (2009) Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3. Acta Mater 57:5137–5145

    Article  CAS  Google Scholar 

  • Liu J, Fang L, Zheng F, Ju S, Shen M (2009) Enhancement of magnetization in Eu doped BiFeO3 nanoparticles. Appl Phys Lett 95:022511

    Article  Google Scholar 

  • Lotey GS, Verma NK (2012) Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J Nanopart Res 14:742

    Article  Google Scholar 

  • Lotey GS, Verma NK (2013) Phase-dependent multiferroism in Dy-doped BiFeO3 nanowires. Superlattices Microstruct 53:184–194

    Article  CAS  Google Scholar 

  • Lotey GS, Kumar S, Verma NK (2012) Fabrication and electrical characterization of highly ordered copper nanowires. Appl Nanosci 2(7):13

    Google Scholar 

  • Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size dependent magnetic properties of single crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7(3):766–772

    Article  CAS  Google Scholar 

  • Qian FZ, Jiang JS, Jiang DM, Zhang W, Liu JH (2010) Multiferroic properties of Bi08Dy02−x La x FeO3 nanoparticles. J Phys D Appl Phys 43:025403

    Article  Google Scholar 

  • Rothery WH, Smallman RE, Haworth CW (1969) The structure of metals and alloys. Metals and Metallurgy Trust of the Institute of Metals and the Institution of Metallurgists, London

  • Song GL, Zhangc HX, Wanga TX, Yanga HG, Changa FG (2012) Effect of Sm, Co co-doping on the dielectric and magnetoelectric properties of BiFeO3 polycrystalline ceramics. J Magn Magn Mater 324(13):2121–2126

    Article  CAS  Google Scholar 

  • Takahashi K, Wang Y, Lee K, Cao G (2006) Fabrication and Li+-interaction properties of V2O5–TiO2 composite nanorod arrays. Appl Phys A 82:27–31

    Article  CAS  Google Scholar 

  • Vaz CAF, Hoffman J, Ahn CA, Ramesh R (2010) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater 22:2900–2918

    Article  CAS  Google Scholar 

  • Wang YP, Zhou L, Zhang MF, Chen XP, Liu JM, Liu ZG (2004) Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett 84:1731

    Article  CAS  Google Scholar 

  • Yang H, Wang H, Yoon J, Wang Y, Jain M, Feldmann DM, Dowden PC, MacManus-Driscoll JL, Jia Q (2009) Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv Mater 21:3794–3798

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang H, Yin J, Zhang H, Chen J, Wang W, Wu G (2010) Structural and magnetic properties in Bi1−x R x FeO3 (x = 0 − 1, R = La, Nd, Sm, Eu and Tb) polycrystalline ceramics. J Magn Magn Mater 322:2251–2255

    Article  CAS  Google Scholar 

  • Zhao Y, Miao J, Zhang X, Chen Y, Xu XG, Jiang Y (2012) Ultra-thin BiFeO3 nanowires prepared by a sol–gel combustion method: an investigation of its multiferroic and optical properties. J Mater Sci Mater Electron 23:180–184

    Article  CAS  Google Scholar 

  • Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303:661–663

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Gurmeet Singh Lotey, gratefully acknowledges the Department of Science and Technology (DST), Government of India, for awarding him the INSPIRE (Innovation in Science Pursuit for Inspired Research) fellowship to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmeet Singh Lotey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotey, G.S., Verma, N.K. Multiferroic properties of Tb-doped BiFeO3 nanowires. J Nanopart Res 15, 1553 (2013). https://doi.org/10.1007/s11051-013-1553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1553-1

Keywords

Navigation