Skip to main content
Log in

Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV–Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose–response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nano Res 6:377–382

    Article  CAS  Google Scholar 

  • Bankar A, Joshi B, Ravikumar A, Zinjarde S (2010) Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B Biointerfaces 80:45–50

    Article  CAS  Google Scholar 

  • BarathManiKanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn H, Eom S, Sangiliyandi (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotech 8:16

    Article  Google Scholar 

  • Bergen JM, von Recum HA, Goodman TT, Massey AP, Pun SH (2006) Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci 6(7):506–516

    Article  CAS  Google Scholar 

  • Chen YS, Hung YC, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4(8):858–864

    Article  CAS  Google Scholar 

  • Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041

    Article  CAS  Google Scholar 

  • Dwivedi AD, Gopal K (2011) Plant-mediated biosynthesis of silver and gold nanoparticles. J Biomed Nanotechnol 7(1):163–164

    Article  CAS  Google Scholar 

  • Goel RK, Sairam K, Rao CV (2001) Role of gastric antioxidant and anti-Helicobactor pylori activities in antiulcerogenic activity of plantain banana (Musa sapientum var. paradisiaca). Indian J Exp Biol 39(7):719–722

    CAS  Google Scholar 

  • Gore MA, Akolekar D (2003) Evaluation of banana leaf dressing for partial thickness burn wounds. Burns 29(5):487–492

    Article  Google Scholar 

  • Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Finkelstein JN, Elder A, Oberdörster G (2011) Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 287(1–3):99–104

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mat Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Hosseinkhani H, Azzam T, Tabata Y, Domb AJ (2004) Dextran–spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther 11:194–203

    Article  CAS  Google Scholar 

  • Hosseinkhani H, Hosseinkhani M, Gabrielson NP, Pack DW, Khademhosseini A, Kobayashi H (2008) DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 85(1):47–60

    Google Scholar 

  • Kalishwaralal K, Gopalram S, Vaidyanathan R, Deepak V, Pandian SR, Gurunathan S (2010) Optimization of alpha-amylase production for the green synthesis of gold nanoparticles. Colloids Surf B Biointerfaces 77(2):174–180

    Article  CAS  Google Scholar 

  • Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):9–1517

    Google Scholar 

  • Kulesz PL (1996) In Situ FT-IR/ATR spectroelectrochemistry of prussian blue in the solid state. Anal Chem 68:244–2442

    Google Scholar 

  • Kumar RS, Rajkapoor B, Perumal P (2011) Antitumor and cytotoxic activities of methanol extract of Indigofera linnaei. Asian Pac J Cancer Prev 12(3):613–618

    Google Scholar 

  • Malugin AA, Ghandehari H (2010) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30(3):212–217

    Google Scholar 

  • Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81(4):1660–1668

    Article  CAS  Google Scholar 

  • Mokbel MS, Hashinaga F (2005) Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruits peel. Am J Biochem Biotech 1(3):125–131

    Article  Google Scholar 

  • Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–1730

    Article  CAS  Google Scholar 

  • Ogi T, Saitoh N, Nomura T, Konishi Y (2010) Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nano Res 12:2531–2539

    Article  CAS  Google Scholar 

  • Park JA, Kim HK, Kim JH, Jeong SW, Jung JC, Lee GH, Lee J, Chang Y, Kim TJ (2010) Gold nanoparticles functionalized by gadolinium-DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorg Med Chem Lett 20(7):2287–2291

    Article  CAS  Google Scholar 

  • Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Phys E: Low-Dimension Syst Nanostruct 42(5):1417–1424

    Article  CAS  Google Scholar 

  • Philip D, Unni C (2011) Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys E: Low-Dimension Syst Nanostruct 43(7):1318–1322

    Article  CAS  Google Scholar 

  • Sneha K, Sathishkumar M, Lee SY, Bae MA, Yun YS (2011) Biosynthesis of Au nanoparticles using cumin seed powder extract. J Nanosci Nanotechnol 11(2):1811–1814

    Article  CAS  Google Scholar 

  • Venkatpurwar VP, Pokharkar VB (2010) Biosynthesis of gold nanoparticles using therapeutic enzyme: in vitro and in vivo efficacy study. J Biomed Nanotechnol 6(6):667–674

    Article  CAS  Google Scholar 

  • Wen L, Lin Z, Gu P, Zhou J, Yao B, Chen G, Fu J (2009) Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res 11:279–288

    Article  CAS  Google Scholar 

  • Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10(2):321–328

    Article  CAS  Google Scholar 

  • Zhang Y, Yang M, Park JH, Singelyn J, Ma H, Sailor MJ, Ruoslahti E, Ozkan M, Ozkan C (2009) A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small 5(17):1990–1996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Department of Biotechnology, Government of India, Ministry of Science and Technology, New Delhi, India (Project No. BT/PR12864/NNT/28/442/2009). The authors thank Mr. K. Logeshwaran for experimental help throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumpati Premkumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arunkumar, P., Vedagiri, H. & Premkumar, K. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines. J Nanopart Res 15, 1481 (2013). https://doi.org/10.1007/s11051-013-1481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1481-0

Keywords

Navigation