Skip to main content
Log in

Effect of the La(OH)3 preparation method on the surface and rehydroxylation properties of resulting La2O3 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Several lanthanum hydroxides (28–146 m2/g) were prepared by different procedures involving precipitation and hydrothermal methods by conventional heating or with microwaves. The use of ultrasounds during precipitation led to the formation of additional crystalline phases whereas the aging treatment with microwaves decreased the temperature needed to form the lanthanum oxide phase when compared with the samples aged by conventional heating. After calcination, La2O3 samples showed similar BET surface areas (3–5 m2/g) but different particle sizes ranging from 150 to 600 nm depending on the La(OH)3 preparation method, as observed by TEM. La2O3 samples were completely rehydroxylated after 80 h of exposure to atmospheric air at controlled humidity conditions recovering only partially the surface areas of the La(OH)3 precursors (14–18 m2/g). The progress of rehydroxylation with time occurred in several steps at different rates. Rehydroxylation rate mainly depended on the particle size and surface area of the lanthanum oxide sample. Therefore, the method used to prepare the initial lanthanum hydroxide affects the surface and rehydroxylation properties of the subsequent lanthanum oxide sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bergadà O, Vicente I, Salagre P, Cesteros Y, Medina F, Sueiras JE (2007) Microporous Mesoporous Mater 101:363–373

    Article  Google Scholar 

  • Bernal S, Díaz JA, García R, Rodríguez-Izquierdo JM (1985) Study of some aspects of the reactivity of lanthanum oxide with carbon dioxide and water. J Mater Sci 20:537–541

    Article  CAS  Google Scholar 

  • Bernal S, Botana FJ, García R, Rodríguez-Izquierdo JM (1987) Behavior of rare earth sesquioxides exposed to atmospheric carbon dioxide and water. React Solids 4:23–40

    Article  CAS  Google Scholar 

  • Cesteros Y, Salagre P, Medina F, Sueiras JE (1999) Several factors affecting faster rates of gibbsite formation. Chem Mater 11:123–129

    Article  CAS  Google Scholar 

  • Dakhel AA (2007) Structural and ac electrical properties of oxidised La and La–Mn thin films grown on Si substrates. Mater Chem Phys 102:266–270

    Article  CAS  Google Scholar 

  • Djerdj I, Garnweitner G, Su DS, Niederberger M (2007) Morphology-controlled nonaqueous synthesis of anisotropic lanthanum hydroxide nanoparticles. J Solid State Chem 180:2154–2165

    Article  CAS  Google Scholar 

  • Fleisch TH, Hicks RF, Bell AT (1984) An XPS study of metal-support interactions on PdSiO2 and PdLa2O3. J Catal 87:398–413

    Article  Google Scholar 

  • Fleming P, Farrell RA, Holmes JD, Morris MA (2010) The rapid formation of La(OH)3 from La2O3 powders on exposure to water vapour. J Am Ceram Soc 93:1187–1194

    Article  CAS  Google Scholar 

  • Gobichon AE, Auffrédic JP, Louër D (1996) Thermal decomposition of neutral and basic lanthanum nitrates studied with temperature-dependent powder diffraction and thermogravimetric analysis. Solid State Ion 93:51–64

    Article  CAS  Google Scholar 

  • Hu C, Liu H, Dong W, Zhang Y, Bao G, Lao C, Whang ZL (2007) La(OH)3 and La2O3 nanobelts—synthesis and physical properties. Adv Mater 19:470–474

    Article  CAS  Google Scholar 

  • Jiawen D, Yanli W, Weili S, Youngxiu L (2006) Preparation of La(OH)3 and La2O3 with Rod Morphology by Simple Hydration of La2O3. J Rare Earths 24:440–442

    Article  Google Scholar 

  • Kale SS, Jadhav KR, Patil PS, Gujar TP, Lokhande CD (2005) Characterizations of spray-deposited lanthanum oxide (La2O3) thin films. Mater Lett 59:3007–3009

    Article  CAS  Google Scholar 

  • Kim SJ, Han WK, Kang SG, Han MS, Cheong YH (2008) Formation of lanthanum hydroxide and oxide via precipitation. Solid State Phenom 135:23–26

    Article  CAS  Google Scholar 

  • Klingenberg B, Vannice MA (1996) Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders. Chem Mater 8:2755–2768

    Article  CAS  Google Scholar 

  • Ma X, Zhang H, Ji Y, Xu J, Yang D (2004) Synthesis of ultrafine lanthanum hydroxide nanorods by a simple hydrothermal process. Mater Lett 58:1180–1182

    Article  CAS  Google Scholar 

  • Méndez M, Carvajal JJ, Cesteros Y, Aguiló M, Díaz F, Giguère A, Drouin D, Martínez-Ferrero E, Salagre P, Formentín P, Pallarès J, Marsal LF (2010) Sol–gel Pechini synthesis and optical spectroscopy of nanocrystalline La2O3 doped with Eu3+. Opt Mater 32:1686–1692

    Article  Google Scholar 

  • Méndez M, Cesteros Y, Marsal LF, Martínez-Ferrero E, Salagre P, Formentín P, Pallarès J, Aguiló M, Díaz F, Carvajal JJ (2011) Polymer composite P3HT:Eu3+ doped La2O3 nanoparticles as a down-converter material to improve the solar spectrum energy. Opt Mater 33:1120–1123

    Article  Google Scholar 

  • Méndez M, Cesteros Y, Marsal LF, Giguère A, Drouin D, Salagre P, Formentín P, Pallarès J, Aguiló M, Díaz F, Carvajal JJ (2012) Effect of thermal annealing on the kinetics of rehydroxylation of Eu3+:La2O3 nanocrystals. Inorg Chem 51:6139–6146

    Google Scholar 

  • Mentus S, Jelic D, Grudic V (2007) Lanthanum nitrate decomposition by both temperature programmed heating and citrate gel combustion comparative study. J Therm Anal Calorim 90:393–397

    Article  CAS  Google Scholar 

  • Murugan AV, Navale SC, Ravi V (2006) Synthesis of nanocrystalline La2O3 powder at 100°C. Mater Lett 60:848–849

    Article  Google Scholar 

  • Neumann A, Walter D (2006) The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Therm Acta 445:200–204

    Article  CAS  Google Scholar 

  • Ozawa M, Onoe R, Kato H (2006) Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation. J Alloy Compd 408–412:556–559

    Article  Google Scholar 

  • Rosynek MP, Magnuson DT (1977) Preparation and characterization of catalytic lanthanum oxide. J Catal 46:402–413

    Article  CAS  Google Scholar 

  • Rzączyńska Z, Ostasz A, Pikus S (2005) Thermal properties of rare earth elements complexes with 1,3,5-benzenetricarboxylic acid. J Therm Anal Calorim 82:347–351

    Article  Google Scholar 

  • Sax NI, Lewis JR (eds) (1987) Hawley’s condensed chemical dictionary, 11th edn. Van Nostrand Reinhold, New York, p 683

    Google Scholar 

  • Van TL, Che M, Tatibouet JM, Kermarec M (1993) Infrared study of the formation and stability of La2O2CO3 during the oxidative coupling of methane on La2O3. J Catal 142:18–26

    Article  Google Scholar 

  • Wang X, Li Y (2003) Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chem Eur J 9:5627–5635

    Article  CAS  Google Scholar 

  • Wang X, Wang M, Song H, Ding B (2006) A simple sol–gel technique for preparing lanthanum oxide nanopowders. Mater Lett 60:2261–2265

    Article  CAS  Google Scholar 

  • Wang S, Zhao Y, Chen J, Xu R, Luo L, Zhong S (2010) Self-assembled 3D La(OH)3 and La2O3 nanostructures: fast microwave synthesis and characterization. Superlattices Microstruct 47:597–605

    Article  CAS  Google Scholar 

  • Wang L, Ma Y, Wang Y, Liu S, Deng Y (2011) Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. Catal Commun 12:1458–1462

    Article  CAS  Google Scholar 

  • Yamamoto O, Takeda Y, Kanno R, Fushimi M (1985) Thermal decomposition and electrical conductivity of M(OH)3 and MOOH (M = Y, lanthanide). Solid State Ion 17:107–114

    Article  CAS  Google Scholar 

  • Zhang N, Yi R, Zhou L, Gao G, Shi R, Qiu G, Liu X (2009) Lanthanide hydroxide nanorods and their thermal decomposition to lanthanide oxide nanorods. Mater Chem Phys 114:160–167

    Article  CAS  Google Scholar 

  • Zhu JL, Zhou YH, Yang HX (1997) Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode. J Power Sour 69:169–173

    Article  CAS  Google Scholar 

  • Zhu J, Gui Z, Ding Y (2008) A simple route to lanthanum hydroxide nanorods. Mater Lett 62:2373–2376

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by projects FP7-SPACE-2010-1-GA-263044, MAT2011-29255-C02-02, TEC2009-09551, TEC2010-21574-C02-02, CSD2007-00007, PI09/90527, 2009SGR1238, 2009SGR549, and 2009SGR235; and the Research Center on Engineering of Materials and Systems (EMaS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Cesteros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méndez, M., Carvajal, J.J., Marsal, L.F. et al. Effect of the La(OH)3 preparation method on the surface and rehydroxylation properties of resulting La2O3 nanoparticles. J Nanopart Res 15, 1479 (2013). https://doi.org/10.1007/s11051-013-1479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1479-7

Keywords

Navigation