Skip to main content
Log in

Laser heating effect on the power dependence of upconversion luminescence in Er3+-doped nanopowders

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Under 980-nm laser diode excitation, a phenomenon on an over-2-slope in log(I)-versus-log(P) plot for red upconversion (UC) luminescence in Er3+-doped nanopowders is usually observed. Due to the existence of many energy-trapping centers on their surfaces, the laser heating effect is shown very prominently in these nanopowders. In this submission, the influence of laser heating on the power dependence of UC luminescence in NaGdF4:Er3+/Yb3+@Citrate nanopowders is investigated. In the experimental works, sub-20-nm β-NaGdF4:Er3+/Yb3+@Citrate nanoparticles were synthesized at 185 °C through a solvothermal route. Then we found that UC luminescence at 524 and 657 nm displayed an over-2-slope in log(I)-versus-log(P) plot. The over-2-slope for 524-nm UC luminescence can be well explained from the greater proportion of population at the 2H11/2 level, which is thermally populated from the 4S3/2 level, with increase of the excitation power. Cross relaxation of 2H11/2 + 4I13/24F9/2 + 4I11/2 is proposed to feed 4F9/2 from 2H11/2 levels, which explains the over-2-slope in log(I)-versus-log(P) plot for red two-photon UC luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104:139–173

    Article  CAS  Google Scholar 

  • Bednarkiewicz A, Wawrzynczyk D, Gagor A, Kepinski L, Kurnatowska M, Krajczyk L, Nyk M, Samoc M, Strek W (2012) Giant enhancement of upconversion in ultra-small Er3+/Yb3+:NaYF4 nanoparticles via laser annealing. Nanotechnology 23:145705–145708

    Article  CAS  Google Scholar 

  • Cai Z, Xu H (2003) Point temperature sensor based on green upconversion emission in an Er:ZBLALiP microsphere. Sens Actuators A 108:187–192

    Article  Google Scholar 

  • Chatterjee D, Rufalhah A, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29:937–943

    Article  CAS  Google Scholar 

  • Chen G, Liu H, Liang H, Somesfalean G, Zhang Z (2008) Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J Phys Chem C 112:12030–12036

    Article  CAS  Google Scholar 

  • Chen F, Zhang S, Bu W, Chen Y, Xiao Q, Liu J, Xing H, Zhou L, Peng W, Shi J (2012) A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chem Eur J 18:7082–7090

    CAS  Google Scholar 

  • Cheng L, Yang K, Zhang S, Shao M, Lee S, Liu Z (2010) Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res 3:722–732

    Article  CAS  Google Scholar 

  • Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L, Song HW (2011a) Multifunctional NaYF4:Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem 21:6193–6200

    Article  CAS  Google Scholar 

  • Dong NN, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández J, Maestro L, Iglesias-de la Cruz M, Sanz-Rodriguez F, Juarranz A, Chen F, Vetrone F, Capobianco J, Solé J, Bettinelli M, Jaque D, Speghini A (2011b) NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5:8665–8671

    Article  CAS  Google Scholar 

  • Feng Y, Bisson JF, Lu J, Huang S, Takaichi K, Shirakawa A, Musha M, Ueda Ki (2004) Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser. Appl Phys Lett 84:1040–1042

    Article  CAS  Google Scholar 

  • Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829

    Article  CAS  Google Scholar 

  • Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 16:2102–2105

    Article  CAS  Google Scholar 

  • Lei Y, Song H, Yang L, Yu L, Liu Z, Pan G, Bai X, Fan L (2005) Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+,Yb3+ nanowires. J Chem Phys 123:174710–174715

    Article  Google Scholar 

  • Li A, Lü Q (2011) Power-dependent upconversion luminescence intensity in NaYF4, Yb3+, Er3+ nanoparticles. EuroPhys Lett 96:180001–180006

    Google Scholar 

  • Li C, Quan Z, Yang P, Huang S, Lian H, Lin J (2008a) Shape-controllable syntheses and upconversion properties of lutetium fluoride (doped with Yb3+/Er3+) microcrystals by hydrothermal process. J Phys Chem C 112:13395–13404

    Article  CAS  Google Scholar 

  • Li C, Quan Z, Yang P, Yang J, Lian H, Lin J (2008b) Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4:Er3+ and YbF3/YbF3:Er3+ microstructures. J Mater Chem 18:1353–1361

    Article  CAS  Google Scholar 

  • Li Z, Zhang Y, Jiang S (2008c) Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv Mater 20:4765–4769

    Article  CAS  Google Scholar 

  • Li C, Zhang C, Hou Z, Wang L, Quan Z, Lian H, Lin J (2009) β-NaYF4 and β-NaYF4:Eu3+ microstructures: morphology control and tunable luminescence properties. J Phys Chem C 113:2332–2339

    Article  CAS  Google Scholar 

  • Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133:17122–17125

    Article  CAS  Google Scholar 

  • Lü Q, Wu Y, Li A, Wang Y, Gao Y, Peng H (2011) Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles. Mater Sci Eng B 176:1041–1046

    Article  Google Scholar 

  • Mai HX, Zhang YW, Sun LD, Yan CH (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J Phys Chem C 111:13721–13729

    Article  CAS  Google Scholar 

  • Park Y, Kim J, Lee K, Jeon KS, Na H, Yu J, Kim H, Lee N, Choi S, Baik SI, Kim H, Park S, Park BJ, Kim Y, Lee S, Yoon SY, Song I, Moon W, Suh Y, Hyeon T (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21:4467–4471

    Article  CAS  Google Scholar 

  • Pollnan M, Gamelin D, Lüthi S, Güdel H, Hehlen M (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61:3337–3346

    Article  Google Scholar 

  • Qiu H, Chen G, Sun L, Hao S, Han G, Yang C (2011) Ethylendiaminetetraacetic acid (EDTA)-controlled synthesis of multicolor lanthanide doped BaYF5 upconversion nanocrystals. J Mater Chem 21:17202–17208

    Article  CAS  Google Scholar 

  • Song Y, Huang Y, Zhang L, Zheng Y, Guo N, You H (2012) Gd2O2S:Yb,Er submicrospheres with multicolor upconversion fluorescence. RSC Adv 2:4777–4781

    Article  CAS  Google Scholar 

  • Suyver J, Grimm J, Krämer K, Güdel H (2005) Highly efficient near-infrared to visible upconversion process in NaYF4:Er3+,Yb3+. J Lumin 114:53–59

    Article  CAS  Google Scholar 

  • Vetrone F, Naccache R, Zamarrón A, de la Fuente A, Sanz-Rodrígues F, Maestro L, Rodriguez E, Jaque D, Solé J, Capobianco J (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254–3258

    Article  CAS  Google Scholar 

  • Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989

    Article  CAS  Google Scholar 

  • Wang Y, Tang ZY, Correa-Duarte MA, Pastoriza-Santos I, Giersig M, Kotov NA, Liz-Marzán LM (2004) Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores. J Phys Chem B 108:15461–15469

    Article  CAS  Google Scholar 

  • Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, Mao B, Xu SK (2009) Immunolabeling and NIR-excited fluorescent imaging of HeLa Cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 3:1580–1586

    Article  CAS  Google Scholar 

  • Wang F, Han Y, Lim C, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, XG L (2010a) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065

    Article  CAS  Google Scholar 

  • Wang L, Zhang Y, Zhu Y (2010b) One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals. Nano Res 3:317–325

    Article  CAS  Google Scholar 

  • Wang Q, Tan M, Zhuo R, Kumar G, Riman R (2010c) A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals. J Nanosci Nanotechnol 10:1685–1692

    Article  CAS  Google Scholar 

  • Wang J, Li Y, Ge Q, Yao H, Li Z (2011) Preparation and luminescence of water soluble poly(N-vinyl-2-pyrrolidone)/LaF3:Eu3+ nanocrystals. Appl Surf Sci 257:4100–4104

    Article  CAS  Google Scholar 

  • Wu S, Han G, Milliron D, Aloni S, Altoe V, Talapin D, Cohen B, Schuck P (2009) Non-blinking and photostable upconverted luminscence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106:10917–10921

    Article  CAS  Google Scholar 

  • Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31:7078–7085

    Article  CAS  Google Scholar 

  • Zeng S, Ren G, Xu C, Yang Q (2011) Modifying crystal phase, shape, size, optical and magnetic properties of monodispersed multifunctional NaYbF4 nanocrystals through lanthanide doping. CrystEngComm 13:4276–4291

    Article  CAS  Google Scholar 

  • Zhang J, Mi C, Wu H, Huang H, Mao C, Xu SK (2012) Synthesis of NaYF4:Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection. Anal Biochem 421:673–679

    Article  CAS  Google Scholar 

  • Zhao Z, Han Y, Lin C, Hu D, Wang F, Chen X, Chen Z, Zheng N (2012) Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Chem Asian J 7:830–837

    Article  CAS  Google Scholar 

  • Zheng Q (2002) Laser advanced manufacture. Huangzhong University of Science & Technology Press, Wuchang

    Google Scholar 

  • Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F (2012) Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33:4618–4627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially financially supported from the National Key Scientific Program (No. 2012CB933503), the Natural Science Foundation of Fujian Province of China (No. 2011J06002), and the Fundamental Research Funds for the Central Universities (No. 2012121009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A.H., Sun, Z.J. & Lü, Q. Laser heating effect on the power dependence of upconversion luminescence in Er3+-doped nanopowders. J Nanopart Res 15, 1377 (2013). https://doi.org/10.1007/s11051-012-1377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1377-4

Keywords

Navigation