Skip to main content
Log in

Temperature modulation of concentration quenching in lanthanide-doped nanoparticles for enhanced upconversion luminescence

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The doping concentration of lanthanide ions is important for manipulating the luminescence properties of upconversion nanoparticles (UCNPs). However, the serious concentration quenching in highly doped UCNPs remains a vital restriction for further enhanced upconversion luminescence (UCL). Herein, we examined the effect of temperature on the concentration quenching of rare-earth UCNPs, an issue that has been overlooked, and we show that it is significant for biomedical or optical applications of UCNPs. In this work, we prepared a series of UCNPs by doping Er3+ luminescent centers at different concentrations in a NaLuF4:Yb3+ matrix. At room temperature (298 K), steady-state photoluminescence (PL) spectroscopy showed substantial concentration quenching of the Er3+ emission with increasing doping concentrations. However, the concentration quenching effect was no longer effective at lower temperatures. Kinetic curves obtained from time-resolved PL spectroscopy further showed that the concentration quenching dynamics were vitally altered in the cryogenic temperature region, i.e., below 160 K. Our work on the temperature-switchable concentration quenching mechanism may shed light on improving UCL properties, promoting their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

    Article  Google Scholar 

  2. Bloembergen, N. Solid state infrared quantum counters. Phys. Rev. Lett. 1959, 2, 84–85.

    Article  Google Scholar 

  3. Gamelin, D. R.; Güdel, H. U. Design of luminescent inorganic materials: New photophysical processes studied by optical spectroscopy. Acc. Chem. Res. 2000, 33, 235–242.

    Article  Google Scholar 

  4. Dong, H.; Sun, L. D.; Yan, C. H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634.

    Article  Google Scholar 

  5. Liu, Y. Y.; Zhang, J. W.; Zuo, C. J.; Zhang, Z.; Ni, D. L.; Zhang, C.; Wang, J.; Zhang, H.; Yao, Z. W.; Bu, W. B. Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Res. 2016, 9, 3257–3266.

    Article  Google Scholar 

  6. Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346–1378.

    Article  Google Scholar 

  7. Tan, G. R.; Wang, M. H.; Hsu, C. Y.; Chen, N. G.; Zhang, Y. Small upconverting fluorescent nanoparticles for biosensing and bioimaging. Adv. Opt. Mater. 2016, 4, 984–997.

    Article  Google Scholar 

  8. Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G.-M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

    Article  Google Scholar 

  9. Chen, G. Y.; Ågren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680–1713.

    Article  Google Scholar 

  10. Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res. 2017, 10, 3434–3446.

    Article  Google Scholar 

  11. Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

    Article  Google Scholar 

  12. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

    Article  Google Scholar 

  13. Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

    Article  Google Scholar 

  14. Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.

    Article  Google Scholar 

  15. Sun, L. D.; Wang, Y.-F.; Yan, C. H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra. Acc. Chem. Res. 2014, 47, 1001–1009.

    Article  Google Scholar 

  16. Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015, 44, 1449–1478.

    Article  Google Scholar 

  17. Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.

    Article  Google Scholar 

  18. Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drugconjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929.

    Article  Google Scholar 

  19. Liu, G. K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 2015, 44, 1635–1652.

    Article  Google Scholar 

  20. Tu, L. P.; Liu, X. M.; Wu, F.; Zhang, H. Excitation energy migration dynamics in upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1331–1345.

    Article  Google Scholar 

  21. Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

    Article  Google Scholar 

  22. Wei, W.; Chen, G. Y.; Baev, A.; He, G. S.; Shao, W.; Damasco, J.; Prasad, P. N. Alleviating luminescence concentration quenching in upconversion nanoparticles through organic dye sensitization. J. Am. Chem. Soc. 2016, 138, 15130–15133.

    Article  Google Scholar 

  23. Wei, W.; Zhang, Y.; Chen, R.; Goggi, J.; Ren, N.; Huang, L.; Bhakoo, K. K.; Sun, H. D.; Tan, T. T. Y. Cross relaxation induced pure red upconversion in activator- and sensitizerrich lanthanide nanoparticles. Chem. Mater. 2014, 26, 5183–5186.

    Article  Google Scholar 

  24. Quimby, R. S.; Aitken, B. G. Multiphonon energy gap law in rare-earth doped chalcogenide glass. J. Non-Cryst. Solids 2003, 320, 100–112.

    Article  Google Scholar 

  25. Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729–734.

    Article  Google Scholar 

  26. Wang, J.; Deng, R. R.; MacDonald, M. A. B.; Chen, B. L.; Yuan, J. K.; Wang, F.; Chi, D. Z.; Hor, T. A. A.; Zhang, P.; Liu, G. K. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 2014, 13, 157–162.

    Article  Google Scholar 

  27. Liu, N.; Qin, W. P.; Qin, G. S.; Jiang, T.; Zhao, D. Highly Plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. Chem. Commun. 2011, 47, 7671–7673.

    Article  Google Scholar 

  28. Chen, B.; Liu, Y.; Xiao, Y.; Chen, X.; Li, Y.; Li, M. Y.; Qiao, X. S.; Fan, X. P.; Wang, F. Amplifying excitationpower sensitivity of photon upconversion in a NaYbF4:Ho nanostructure for direct visualization of electromagnetic hotspots. J. Phys. Chem. Lett. 2016, 7, 4916–4921.

    Article  Google Scholar 

  29. Li, X. Y.; Liu, X. W.; Chevrier, D. M.; Qin, X.; Xie, X. J.; Song, S. Y.; Zhang, H. J.; Zhang, P.; Liu, X. G. Energy migration upconversion in manganese(II)-doped nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 13312–13317.

    Article  Google Scholar 

  30. Ding, Y. D.; Wu, F.; Zhang, Y. L.; Liu, X. M.; de Jong, E. M. L. D.; Gregorkiewicz, T.; Hong, X.; Liu, Y. C.; Aalders, M. C. G.; Buma, W. J. et al. Interplay between static and dynamic energy transfer in biofunctional upconversion nanoplatforms. J. Phys. Chem. Lett. 2015, 6, 2518–2523.

    Article  Google Scholar 

  31. Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378–1385.

    Article  Google Scholar 

  32. Bünzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53–61.

    Article  Google Scholar 

  33. Chen, Z. G.; Chen, H. L.; Hu, H.; Yu, M. X.; Li, F. Y.; Zhang, Q.; Zhou, Z. G.; Yi, T.; Huang, C. H. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 2008, 130, 3023–3029.

    Article  Google Scholar 

  34. Zhang, F.; Wan, Y.; Yu, T.; Zhang, F. Q.; Shi, Y. F.; Xie, S. H.; Li, Y. G.; Xu, L.; Tu, B.; Zhao, D. Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem., Int. Ed. 2007, 46, 7976–7979.

    Article  Google Scholar 

  35. Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.

    Article  Google Scholar 

  36. Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

    Article  Google Scholar 

  37. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

    Article  Google Scholar 

  38. Zhang, Y. L.; Liu, X. H.; Lang, Y. B.; Yuan, Z.; Zhao, D.; Qin, G. S.; Qin, W. P. Synthesis of ultra-small BaLuF5:Yb3+,Er3+@BaLuF5:Yb3+ active-core-active-shell nanoparticles with enhanced up-conversion and down-conversion luminescence by a layer-by-layer strategy. J. Mater. Chem. C 2015, 3, 2045–2053.

    Article  Google Scholar 

  39. Heer, S.; Kömpe, K.; Güdel, H. U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102–2105.

    Article  Google Scholar 

  40. Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.

    Article  Google Scholar 

  41. Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.

    Article  Google Scholar 

  42. Ding, M. Y.; Chen, D. Q.; Yin, S. L.; Ji, Z. G.; Zhong, J. S.; Ni, Y.; Lu, C. H.; Xu, Z. Z. Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage. Sci. Rep. 2015, 5, 12745.

    Article  Google Scholar 

  43. Liu, Q.; Sun, Y.; Yang, T. S.; Feng, W.; Li, C. G.; Li, F. Y. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 2011, 133, 17122–17125.

    Article  Google Scholar 

  44. Li, C. X.; Quan, Z. W.; Yang, P. P.; Huang, S. S.; Lian, H. Z.; Lin, J. Shape-controllable synthesis and upconversion properties of lutetium fluoride (doped with Yb3+/Er3+) microcrystals by hydrothermal process. J. Phys. Chem. C 2008, 112, 13395–13404.

    Article  Google Scholar 

  45. Shi, F.; Wang, J. S.; Zhai, X. S.; Zhao, D.; Qin, W. P. Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrystEngComm 2011, 13, 3782–3787.

    Article  Google Scholar 

  46. Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G.-H.; Luo, Y. S.; Zhao, H. F. Decrease in particle size and enhancement of upconversion emission through Y3+ ions doping in hexagonal NaLuF4:Yb3+/Er3+ nanocrystals. CrystEngComm 2015, 17, 3103–3109.

    Article  Google Scholar 

  47. Zheng, K. Z.; He, G. H.; Song, W. Y.; Bi, X. Q.; Qin, W. P. A strategy for enhancing the sensitivity of optical thermometers in β-NaLuF4:Yb3+/Er3+ nanocrystals. J. Mater. Chem. C 2015, 3, 11589–11594.

    Article  Google Scholar 

  48. Zeng, J. H.; Su, J.; Li, Z. H.; Yan, R. X.; Li, Y. D. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 2005, 17, 2119–2123.

    Article  Google Scholar 

  49. Berry, M. T.; May, P. S. Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4:Yb3+,Er3+. J. Phys. Chem. A 2015, 119, 9805–9811.

    Article  Google Scholar 

  50. Lei, P. P.; Zhang, P.; Yuan, Q. H.; Wang, Z.; Dong, L. L.; Song, S. Y.; Xu, X.; Liu, X. L.; Feng, J.; Zhang, H. J. Yb3+/Er3+-codoped Bi2O3 nanospheres: probe for upconversion luminescence imaging and binary contrast agent for computed tomography imaging. ACS Appl. Mater. Interfaces 2015, 7, 26346–26354.

    Article  Google Scholar 

  51. Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958.

    Article  Google Scholar 

  52. Xu, X.; Zhang, P.; Yuan, Q. H.; Lei, P. P.; Dong, L. L.; Wang, Z.; Liu, X. L.; Song, S. Y.; Feng, J.; Zhang, H. J. Dual-functional α-NaYb(Mn)F4:Er3+@NaLuF4 nanocrystals with highly enhanced red upconversion luminescence. RSC Adv. 2016, 6, 33493–33500.

    Article  Google Scholar 

  53. Wang, Y.; Tu, L. P.; Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Zhang, H. Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power, density and surface dependence. J. Phys. Chem. C 2009, 113, 7164–7169.

    Article  Google Scholar 

  54. Li, X. M.; Wang, R.; Zhang, F.; Zhao, D. Y. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 2014, 14, 3634–3639.

    Article  Google Scholar 

  55. Anderson, R. B.; Smith, S. J.; May, P. S.; Berry, M. T. Revisiting the NIR-to-visible upconversion mechanism in β-NaYF4:Yb3+,Er3+. J. Phys. Chem. Lett. 2014, 5, 36–42.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21373268, 21301121, and 21227803), the open funding of Renmin University of China (Nos. 15XNLQ04 and 10XNI007), and the open funding of the State Key Laboratory on Integrated Optoelectronics of Jilin University (No. IOSKL2015KF33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Fu.

Electronic supplementary material

12274_2017_1828_MOESM1_ESM.pdf

Temperature modulation of concentration quenching in lanthanide-doped nanoparticles for enhanced upconversion luminescence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhao, N., Fu, L. et al. Temperature modulation of concentration quenching in lanthanide-doped nanoparticles for enhanced upconversion luminescence. Nano Res. 11, 2104–2115 (2018). https://doi.org/10.1007/s12274-017-1828-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1828-4

Keywords

Navigation