Skip to main content

Advertisement

Log in

Experimental determination of conduction and valence bands of semiconductor nanoparticles using Kelvin probe force microscopy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The ability to determine a semiconductor’s band edge positions is important for the design of new photocatalyst materials. In this paper, we introduced an experimental method based on Kelvin probe force microscopy to determine the conduction and valence band edge energies of semiconductor nanomaterials, which has rarely been demonstrated. We tested the method on six semiconductor nanoparticles (α-Fe2O3, CeO2, Al2O3, CuO, TiO2, and ZnO) with known electronic structures. The experimentally determined band edge positions for α-Fe2O3, Al2O3, and CuO well matched the literature values with no statistical difference. Except CeO2, all other metal oxides had a consistent upward bias in the experimental measurements of band edge positions because of the shielding effect of the adsorbed surface water layer. This experimental approach may outstand as a unique alternative way of probing the band edge energy positions of semiconductor materials to complement the current computational methods, which often find limitations in new synthetic or complex materials. Ultimately, this work provides scientific foundation for developing experimental tools to probe nanoscale electronic properties of photocatalytic materials, which will drive breakthroughs in the design of novel photocatalytic systems and advance the fundamental understanding of material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afanasev V, Shamuilia S, Stesmans A, Dimoulas A, Panayiotatos Y, Sotiropoulos A, Houssa M, Brunco D (2006) Electron energy band alignment at interfaces of (100) Ge with rare-earth oxide insulators. Appl Phys lett 88:132111–132113

    Article  Google Scholar 

  • Berger R, Butt H-J, Retschke MB, Weber SAL (2009) Electrical modes in scanning probe microscopy. Macromol Rapid Commun 30:1167–1178

    Article  CAS  Google Scholar 

  • Burello E, Worth AP (2011) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5:228–235

    Article  CAS  Google Scholar 

  • De Filippo A, Simona F, Annabella S (2008) Alignment of the dye’s molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology 19:424002

    Article  Google Scholar 

  • Glatzel T, Sadewasser S, Shikler R, Rosenwaks Y, Lux-Steiner MC (2003) Kelvin probe force microscopy on III-V semiconductors: the effect of surface defects on the local work function. Mater Sci Eng B 102:138–142

    Article  Google Scholar 

  • Gouveia RF, Galembeck F (2009) Electrostatic charging of hydrophilic particles due to water adsorption. J Am Chem Soc 131:11381–11386

    Article  CAS  Google Scholar 

  • Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  CAS  Google Scholar 

  • Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173. doi:10.1021/nn300934k

    Article  CAS  Google Scholar 

  • Liscio A, Palermo V, Mullen K, Samori P (2008) Tip-sample interactions in Kelvin probe force microscopy: quantitative measurement of the local surface potential. J Phys Chem C 112:17368–17377

    Article  CAS  Google Scholar 

  • Liscio A, Palermo V, Samorì P (2010) Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials. Acc Chem Res 43:541–550

    Article  CAS  Google Scholar 

  • Melitz W, Shen J, Kummel AC, Lee S (2011) Kelvin probe force microscopy and its application. Surf Sci Rep 66:1–27

    Article  CAS  Google Scholar 

  • Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100:13061–13078

    Article  CAS  Google Scholar 

  • Oh YJ, Jo W, Yang Y, Park S (2007) Biofilm formation and local electrostatic force characteristics of Escherichia coli O157:H7 observed by electrostatic force microscopy. Appl Phys Lett 90:143901

    Article  Google Scholar 

  • Portier J, Hilal HS, Saadeddin I, Hwang SJ, Subramanian MA, Campet G (2004) Thermodynamiccorrelations and bandgap calculations in metal oxides. Prog Solid State Chem 32(3–4):207–217

    Article  CAS  Google Scholar 

  • Preisler E, Marsh O, Beach R, McGill T (2001) Stability of cerium oxide on silicon studied by x-ray photoelectron spectroscopy. J Vac Sci Technol B 19:1611

    Google Scholar 

  • Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat Nanotechnol 3:106–111

    Article  CAS  Google Scholar 

  • Sugimura H, Ishida Y, Hayashi K, Takai O, Nakagiri N (2002) Potential shielding by the surface water layer in Kelvin probe force microscopy. Appl Phys Lett 80:1459–1461

    Article  CAS  Google Scholar 

  • Sun L, Wang JJ, Bonaccurso E (2010) Nanoelectronic properties of a model system and of a conjugated polymer: a study by Kelvin probe force microscopy and scanning conductive torsion mode microscopy. J Phys Chem C 114:7161–7168

    Article  CAS  Google Scholar 

  • Wang C, Zhao JC, Wang XM, Mai BX, Sheng GY, Peng P, Fu JM (2002) Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl Catal B 39:269–279

    Article  CAS  Google Scholar 

  • Wu YB, Chan MKY, Ceder G (2011) Prediction of semiconductor band edge positions in aqueous environments from first principles. Phys Rev B 83(23):235–301

    Google Scholar 

  • Xu Y, Schoonen MAA (2000a) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556

    CAS  Google Scholar 

  • Xu Y, Schoonen MAA (2000b) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543

    CAS  Google Scholar 

  • Zhang W, Kalive M, Capco DG, Chen Y (2010a) Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size. Nanotechnology 21:355103

    Article  Google Scholar 

  • Zhang W, Stack AG, Chen Y (2010b) Interaction force measurement between Escherichia coli cells and nanoparticles immobilized surfaces by using AFM. Colloids Surf B 82:316–324

    Article  Google Scholar 

  • Zhang W, Rittmann B, Chen Y (2011a) Size effects on adsorption of hematite nanoparticles on Escherichia coli cells. Environ Sci Technol 45:2172–2178

    Article  CAS  Google Scholar 

  • Zhang W, Yao Y, Chen Y (2011b) Imaging and quantifying the morphology and nanoelectrical properties of quantum dot nanoparticles interacting with DNA. J Phys Chem C 115:599–606

    Article  CAS  Google Scholar 

  • Zhang W, Hughes J, Chen Y (2012) Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells. Appl Environ Microbiol 78(11):3905–3915. doi:10.1128/AEM.00193-12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the U.S. Environmental Protection Agency Science to Achieve Results Program Grant RD-83385601, Engineering Research Center (ERC)/Semiconductor Research Corporation (SRC)/ESH grant (425.025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Chen, Y. Experimental determination of conduction and valence bands of semiconductor nanoparticles using Kelvin probe force microscopy. J Nanopart Res 15, 1334 (2013). https://doi.org/10.1007/s11051-012-1334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1334-2

Keywords

Navigation