Skip to main content
Log in

Exploring the electronic structure of graphene quantum dots

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present results of our theoretical investigation on the electronic structure of graphene quantum dots (QDs). We show how the HOMO–LUMO gap can be engineered by changing their size and/or shape. We also explore the possibility of tuning the gap by functionalization with different organic groups. We find that the covalent functionalization shifts both the HOMO and LUMO energies without significantly changing the HOMO–LUMO gap. This has been explained by analysing the density of states of different functionalized graphene QDs. Our theoretical results agree well with those of the experiment on recently synthesized graphene QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31): 13226–13239

    Article  CAS  Google Scholar 

  • Aradi B, Hourahine B, Fraunheim Th (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111(26): 5678–5684

    Article  CAS  Google Scholar 

  • Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8(12):4373–4379

    Article  CAS  Google Scholar 

  • Boukhvalov DW, Katsnelson MI (2009) Chemical functionalization of graphene. J Phys Condens Matter 21: 344205

    Article  CAS  Google Scholar 

  • Brus LE (1991) Quantum crystallites and nonlinear optics. Appl Phys A 53: 465–474

    Article  Google Scholar 

  • Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30: 475–521

    Article  CAS  Google Scholar 

  • El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5): 326–333

    Article  CAS  Google Scholar 

  • Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Fraunheim Th, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58: 7260–7268

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6: 183–191

    Article  CAS  Google Scholar 

  • Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C (2010) Organic functionalisation of graphenes. Chem Commun 46: 1766

    Article  CAS  Google Scholar 

  • Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7): 2834–2860

    Article  CAS  Google Scholar 

  • Katsnelson MI, Novoselov KS, Geim AK (2006) Chiral tunnelling and the Klein paradox in graphene. Nat Phys 2: 620–625

    Article  CAS  Google Scholar 

  • Li L-S, Yan X (2010) Colloidal graphene quantum dots. J Phys Chem Letts 1(17): 2572–2576

    Article  CAS  Google Scholar 

  • Liu L-H, Yan M (2011) Functionalization of pristine graphene with perfluorophenyl azides. J Mater Chem 21: 3273-3276

    Article  CAS  Google Scholar 

  • Niehaus Th, Suhai S, DellaSala F, Lugli P, Elstner M, Seifert G, Frauenheim Th (2001) Tight-binding approach to time-dependent density-functional response theory. Phys Rev B 63: 085108

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696): 666–669

    Google Scholar 

  • Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci. 102(30): 10451–10453

    Article  CAS  Google Scholar 

  • Porezag D, Frauenheim Th, KÖhler Th, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys Rev B 51: 12947–12957

    Article  CAS  Google Scholar 

  • Schumacher S (2011) Photophysics of graphene quantum dots: insights from electronic structure calculations. Phys Rev B 83: 081417(R)

  • Seifert G, (2007) Tight-binding density functional theory: an approximate Kohn–Sham DFT scheme. J Phys Chem A 111: 5609

    Article  CAS  Google Scholar 

  • Singh AK, Penev ES, Yakobson BI (2010) Vacancy clusters in graphane as quantum dots. ACS Nano 4: 3510–3514

    Article  CAS  Google Scholar 

  • Voznyy O, Güclü AD, Potasz P, Hawrylak P (2011) Effect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edges. Phys Rev B 83:165417

    Article  Google Scholar 

  • Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17): 5944–5945

    Article  CAS  Google Scholar 

  • Yan X, Cui X, Li B, Li L-S (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Letts 10(5): 1869–1873

    Article  CAS  Google Scholar 

  • Yan X, Li L-S (2011) Solution-chemistry approach to graphene nanostructures. J Mater Chem 21: 3295–3300

    Article  CAS  Google Scholar 

  • Yan X, Li B, Cui X, Wei Q, Tajima K, Li L-S (2011) Independent tuning of the band gap and redox potential of graphene quantum dots. J Phys Chem Letts 2(10): 1119–1124

    Article  CAS  Google Scholar 

  • Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nat Lond 438:201–204

    Article  CAS  Google Scholar 

  • Zhang ZZ, Chang K, Peeters FM (2008) Tuning of energy levels and optical properties of graphene quantum dots. Phys Rev B 77: 235411–235415

    Article  Google Scholar 

  • Zhong X, Jin J, Li S, Niu Z, Hu W, Li R, Ma J, (2010) Aryne cycloaddition: highly efficient chemical modification of graphene. Chem Commun 46: 7340–7342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from DST, New Delhi[SR/NM/NS-49/2007] through research grant is gratefully acknowledged. Sunandan Sarkar and Bikash Mandal are grateful to CSIR, New Delhi for the award of Senior Research Fellowship (SRF) and Junior Research Fellowship (JRF), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, B., Sarkar, S. & Sarkar, P. Exploring the electronic structure of graphene quantum dots. J Nanopart Res 14, 1317 (2012). https://doi.org/10.1007/s11051-012-1317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1317-3

Keywords

Navigation