Skip to main content
Log in

Interlayer transition in graphene carbon quantum dots

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene Carbon Quantum Dots (GCQDs) are multi-layered carbon nanostructures that have attracted considerable attention due to its unique properties. Many technological applications, such as batteries, biological imaging, capacitors, solar cells, light emitting diodes, among others, could benefit from the low toxicity and the chemical and physical stability of these nanostructures. Despite much research, many optical properties, such as absorption and photoluminescence, of GCQDs are not completely understood yet. GCQD absorption spectra show a number of different bands whose origin is still on discussion. Many interpretations are made considering a single graphene layer. In this work, GCQD samples synthesized by the pyrolysis of citric acid was characterized by absorption spectroscopy measurements and Density Functional Theory simulations considering multi-layered structures. Density of States and electronic response functions calculations were also performed. From the results of these calculations, the absorption band associated to a π-π* (CC) transition could be also associated to a transition between different graphene layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Elias Ponce and C. Rudamas, revista Matéria 20, 676–681 (2015).

    Article  Google Scholar 

  2. I. Oliva, S. Alvarenga and C. Rudamas in 2nd World Congress on Recent Advances in Nanotechnology, edited by Wolfgang Ensinger (Proc. 105, Barcelona).

  3. S. Alvarenga, H. Ponce, I. Oliva and C. Rudamas in edited by Jin Zhang (Proc. 140, Niagara Falls).

  4. A.N. Emam, S. A. Loutfy, A. A. Mostafa, H. Awad and M. B. Mohamed, RSC Adv. 7 (38), 23502–23514 (2017).

    Article  CAS  Google Scholar 

  5. O. E. Semonin, J. M. Luther, and M. C. Beard, Mater. Today 15 (11), 508–515 (2012).

    Article  CAS  Google Scholar 

  6. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovié, Nat. Photon. 7 (12), 933–933 (2013).

    Article  Google Scholar 

  7. H. Wang, P. Sun, S. Cong, J. Wu, L. Gao, Y. Wang, X. Dai, Q. Yi, and G. Zou, Nanoscale Res. Lett. 11 (1), 1–18 (2016).

    Article  Google Scholar 

  8. J. Gu, X. Zhang, A. Pang and J. Yang, Nanotechnology, 27 (16), 165704 (2016).

    Article  Google Scholar 

  9. A. Valizadeh, H. Mikaeili, M. Samiei, Mohammad, S. M. Farkhani, Samad Mussa, N. Zarghami, Nosratalah, M. Kouhi, Mohammad A. Akbarzadeh, and S. Davaran, Soodabeh, Nanoscale Res. Lett. 7, 480 (2012)

    Article  Google Scholar 

  10. R. Jelinek, in Carbon quantum dots: synthesis, properties and applications, edited by Paulo Araujo (Springer international publishing, Switzerland, 2017), p. 129–130.

  11. Y. Wang and A. Hu, J. Mater. Chem. C 2, 6921 (2014).

    Article  CAS  Google Scholar 

  12. P. Tian, L. Tang, K. S. Teng and S. P. Lau, Mater. Today Chem. 10, 221–258 (2018).

    Article  CAS  Google Scholar 

  13. A. R. Matamala and A. A. Alarcón, I. J. Q. Chem. 112 (5), 1316–1322 (2012).

    Article  CAS  Google Scholar 

  14. W. Kwon, S. Do, J. H. Kim, M. S. Jeong and W. Rhee, Sci. Rep. 5, 12604 (2015).

    Article  CAS  Google Scholar 

  15. I. Ozfidan, A. D. Güçlü, M. Korkusinski and P. Hawrylak, Phys. Status Solidi RRL 10 (1), 102–110 (2016).

    Article  CAS  Google Scholar 

  16. S. S. R. K. C. Yamijala, M. Mukhopadhyay and S. K. Pati, J. Phys. Chem. C 119, 12079–12087 (2015).

    Article  CAS  Google Scholar 

  17. J. Cuadra, H. Ponce and C. Rudamas, in 2018 IEEE 38th Central America and Panama Convention, edited by Manuel Cardona (Proc., San Salvador).

  18. S. Wang, Z. G. Chen, Zhi Gang, I. Cole and Q. Li, Carbon 82, 304–313 (2015).

    Article  CAS  Google Scholar 

  19. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21 (39), 395502 (2009).

    Google Scholar 

  20. P. Giannozzi, Oliviero Andreussi, T Brumme, et al., J. Phys.: Condens. Matter 29 (46), 465901 (2017).

    CAS  Google Scholar 

  21. O. B. Malcıoglu, R. Gebauer, D. Rocca, S. Baroni, Comput. Phys. Commun. 182 (8), 1744–1754 (2011).

    Article  Google Scholar 

  22. T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard and D. C. Langreth, Phys. Rev. B 76 (12), 125112 (2007).

    Article  Google Scholar 

  23. D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Kack et al., J. Phys.: Condens. Matter 21 (8), 084203 (2009).

    CAS  Google Scholar 

  24. K. Berland, V. R. Cooper, K. Lee, S. Elsebeth, T. Thonhauser, H. Per, L. Bengt I, Rep. Prog. Phys. 78 (6), 66501 (2015).

    Article  Google Scholar 

  25. J. Cuadra, Licenciatura thesis, Universidad de El Salvador, 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuadra Aparicio, J.A., Ponce, H. & Rudamas, C. Interlayer transition in graphene carbon quantum dots. MRS Advances 5, 3345–3352 (2020). https://doi.org/10.1557/adv.2020.410

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.410

Navigation