Skip to main content
Log in

Flame volume synthesis of carbon-coated WO3 nanoplatelets and nanorods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper reports the flame synthesis of WO3/C organic/inorganic octagonal nanoplatelets and nanorods. A high-purity tungsten wire inserted into the oxygen-rich region of the flame was used as a material source. The growth of the formed nanostructures starts with the oxidation of the metal probe, and evaporation of the oxide layer which is followed by the transport of the tungsten oxide vapors from the oxygen-rich to the hydrocarbon-rich zone of the flame. In the oxygen-rich zone, tungsten oxide vapors are crystallized into well-defined single crystal octagonal nanoplatelets. The continuous vapor deposition leads to the nanoplatelet growth in a preferred direction resulting in elongated rod-like nanostructures. The tungsten oxide structures entering the hydrocarbon-rich zone of the flame are coated with carbon layers forming hybrid WO3/C nanomaterials. The ideal conditions for the rapid and direct formation of these novel nanostructures are attributed to the synergy of the strong thermal and chemical gradients present in the flame volume. The entire process takes only a few seconds. A proposed mechanism of the hybridization process of the WO3 nanorods and nanoplatelets to WO3/C is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe T, Suemitsu M, Miyamoto N (1994) Microcrystalline diamond deposition using inert-gas curtain combustion-flame method. J Cryst Growth 143:206–212

    Article  CAS  Google Scholar 

  • Beltrame A, Porshnev P, Merchan–Merchan W, Saveliev A, Fridman A, Kennedy LA, Petrova O, Zhdanok S, Amouri F, Charon O (2001) Soot and NO formation in methane oxygen enriched diffusion flames. Combust Flame 124:295–310

    Article  CAS  Google Scholar 

  • Calcote HF, Felder W (1992) A new gas-phase combustion synthesis process for pure metals, alloys, and ceramics. Proc Combust Inst 24:1869–1876

    Google Scholar 

  • Fusheng X, Xiaofei L, Stephen DT (2006) Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames. Carbon 44:570–577

    Article  Google Scholar 

  • Gasparyan Y, Mayer M, Pisarev A, Wiltner A, Adelhelm C, Koch F, Rasinski M, Roth J (2011) Deuterium permeation through carbon-coated tungsten during ion bombardment. J Appl Phys 110(3):033303–033309

    Article  Google Scholar 

  • Gupta A, Ifeacho P, Schulz C, Hartmut W (2010) Synthesis of tailored WO(3) and WO(x) (2.9 < x < 3) nanoparticles by adjusting the combustion conditions in a H(2)/O(2)/Ar premixed flame reactor. Proc Combust Inst 33:1883–1890

    Article  Google Scholar 

  • Height MJ, Howard JB, Tester JW, Vander Sande JB (2004) Flame synthesis of single-walled carbon nanotubes. Carbon 42:2295–2307

    Article  CAS  Google Scholar 

  • Height MJ, Madler L, Pratsinis SE, Krumeich F (2006) Nanorods of ZnO made by flame spray pyrolysis. Chem Mater 18:572–578

    Article  CAS  Google Scholar 

  • Hong K, Yiu W, Wu H, Gao J, Xie M (2005) A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions. Nanotechnology 16:1608–1611

    Article  CAS  Google Scholar 

  • Hou Y, Kondoh H, Shimojo M, Kogure T, Ohta T (2005) High yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J Phys Chem B 109:19094–19098

    Article  CAS  Google Scholar 

  • Howard JB, McKinnon JT, Makarovsky Y, Lafleur AL, Johnson ME (1991) Fullerenes C60 and C70 in flames. Nature 352:139–141

    Article  CAS  Google Scholar 

  • Howard JB, Chowdhury DK, Vander Sande JB (1994) Carbon shells in flames. Nature 370:603

    Article  Google Scholar 

  • Jankovic L, Gournis D, Trikalitis PN, Arfaoui I, Cren T, Rudolf P, Sage M-H, Palstra TTM, Kooi B, De Hosson J, Karakassides MA, Dimos K, Moukarika A, Bakas T (2006) Carbon nanotubes encapsulating superconducting single-crystalline tin nanowires. Nano Lett 6:1131–1135

    Article  CAS  Google Scholar 

  • Jelle BP, Hagen G (1999) Performance of an electrochromic window based on polyaniline, prussian blue and tungsten oxide. Sol Energy Mater Sol Cells 58:277–286

    Article  CAS  Google Scholar 

  • Jiang LP, Xu S, Zhu JM, Zhang JR, Zhu JJ, Chen HY (2004) Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg Chem 43:5877–5883

    Article  CAS  Google Scholar 

  • Kichambare P, Hii KF, Vallance RR, Sadanadan B, Rao AM, Javed K, Menguc MP (2006) Growth of tungsten oxide nanorods with carbon caps. J Nanosci Nanotechnol 6:536–540

    Article  CAS  Google Scholar 

  • Kickelbick G (2007) Hybrid materials synthesis, characterization, and applications. Wiley, Weinheim

    Google Scholar 

  • Kuznetsov IA, Greenfield MJ, Mehta YU, Merchan-Merchan U, Salcar G, Saveliev AV (2011) Increasing the solar cell power-output by coating with transition metal-oxide nanorods. Appl Energy 88(11):4218–4221

    Google Scholar 

  • Lee BW, Jeong JI, Hwang JY, Choi M, Chung SH (2001) Analysis of growth of non-spherical silica particles in a counterflow diffusion flame considering chemical reactions, coagulation and coalescence. Aerosol Sci 32:165–185

    Article  CAS  Google Scholar 

  • Li S, El-Shall MS (1999) Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles. Nanostruct Mater 12:215–219

    Article  Google Scholar 

  • Li XL, Liu J-F, Li YD (2003) Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg Chem 42:921–924

    Article  CAS  Google Scholar 

  • Li TX, Zhang HG, Wang FJ, Che Z, Saito K (2007) Synthesis of carbon nanotubes on Ni-alloy and Si-substrates using counterflow methane–air diffusion flames. Proc Combust Inst 31:1849–1856

    Article  Google Scholar 

  • Lu W, Ding Y, Chen Y, Wang ZL, Fang J (2005) Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. J Am Chem Soc 127:10112–10116

    Article  CAS  Google Scholar 

  • Merchan–Merchan W, Saveliev AV, Kennedy LA (2003) Carbon nanostructures in opposed-flow methane oxy-flames. Combust Sci Technol 175:2217–2236

    Article  Google Scholar 

  • Merchan–Merchan W, Saveliev AV, Kennedy LA (2004) High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon 42:599–608

    Article  Google Scholar 

  • Merchan–Merchan W, Saveliev AV, Taylor AM (2008) High-rate flame synthesis of highly crystalline iron oxide nanorods. Nanotechnology 19:125605–125610

    Article  Google Scholar 

  • Merchan–Merchan W, Saveliev AV, Cuello Jimenez W, Salkar G (2010a) Flame synthesis of hybrid nanowires with carbon shells and tungsten-oxide cores. Carbon 48:4510–4518

    Article  Google Scholar 

  • Merchan–Merchan W, Saveliev AV, Jimenez WC (2010b) Solid support flame synthesis of 1-D and 3-D tungsten-oxide nanostructures. Proc Combust Inst 33:1899–1908

    Article  Google Scholar 

  • Merchan–Merchan W, Saveliev AV, Cuello-Jimenez W (2010c) Novel flame-gradient method for synthesis of metal-oxide channels, nanowires and nanorods. J Exp Nanosci 5:199–212

    Article  Google Scholar 

  • Park KW, Ahn KS, Choi JH, Nah YC, Kim YM, Sung YE (2002) Pt−WOX electrode structure for thin-film fuel cells. Appl Phys Lett 81:907–909

    Article  CAS  Google Scholar 

  • Pol SV, Pol VG, Kessler VG, Gedanken A (2006) Growth of carbon sausages filled with in situ formed tungsten oxide nanorods: thermal dissociation of tungsten(VI) isopropoxide in isopropanol. New J Chem 30:370–376

    Article  CAS  Google Scholar 

  • Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219

    Article  CAS  Google Scholar 

  • Rao PM, Zheng X (2010) Flame synthesis of tungsten oxide nanostructures on diverse substrates. Proc Combust Inst 33:1891–1898

    Article  Google Scholar 

  • Righettoni M, Tricoli A, Pratsinis SE (2010) Thermally stable, silica-doped epsilon-WO(3) for sensing of acetone in the human breath. Chem Mater 22:3152–3157

    Article  CAS  Google Scholar 

  • Rosner DE (2005) Flame synthesis of nano-particles: recent progress/current needs in areas of rate laws, population dynamics and characterization. Ind Eng Chem Res 44:6045–6055

    Article  CAS  Google Scholar 

  • Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123:10639–10649

    Article  CAS  Google Scholar 

  • Silvestrini M, Merchan–Merchan W, Richter H, Saveliev AV, Kennedy LA (2005) Fullerenes formation in atmospheric pressure opposed flow oxy-flames. Proc Combust Inst 30:2545–2552

    Article  Google Scholar 

  • Suemitsu M, Abe T, Na HJ, Yamane H (2005) MoO2 hollow fiber with rectangular cross sections. Jpn J Appl Phys 44:L449–L450

    Article  CAS  Google Scholar 

  • Tani T, Madler L, Pratsinis SE (2002) Homogeneous ZnO nanoparticles. J Nanopart Res 4:337–343

    Article  CAS  Google Scholar 

  • Tse S, Kear B, Cosandey F (2005) Flame synthesis of metal-oxide nanostructures. J Mater Chem 15:1–3

    Article  Google Scholar 

  • Ulrich GD (1984) Flame synthesis of fine particles. Chem Eng News 62:22–29

    Article  CAS  Google Scholar 

  • Vander Wal RL (2000) Flame synthesis of substrate-supported metal catalyzed carbon nanotubes. Chem Phys Lett 324:217–223

    Article  Google Scholar 

  • Vander Wal RL (2002) Flame synthesis of Ni-catalyzed nanofibers. Carbon 40:2101–2107

    Article  Google Scholar 

  • Wang SJ, Chen CH, Ko RM, Kuo YC, Wong CH, Wu CH, Uang KM, Chen TM, Liou BW (2005) Preparation of tungsten oxide nanowires from sputter-deposited WCX films using an annealing/oxidation process. Appl Phys Lett 86:263103-1–263103-3

    Google Scholar 

  • Widiyastuti W, Purwanto A, Wang WN, Iskandar F, Setyawan H, Okuyama K (2009) Nanoparticle formation through solid-fed flame synthesis: experiment and modeling. AIChE J 55:885–895

    Article  CAS  Google Scholar 

  • Woodward PM, Sleight AW, Vogt T (1997) Ferroelectric tungsten trioxide. J Solid State Chem 131:9–17

    Article  CAS  Google Scholar 

  • Xu F, Tse SD, Al-Sharab JF, Kear BH (2006) Flame synthesis of aligned tungsten oxide nanowires. Appl Phys Lett 88:2431251–2431252

    Google Scholar 

  • Yuan L, Tianxiang L, Saito K (2003) Growth mechanism of carbon nanotubes in methane diffusion flames. Carbon 41:1889–1896

    Article  CAS  Google Scholar 

  • Zachariah MR, Chin D, Semerjian HG, Katz JL (1989) Silica particle synthesis in a counterflow diffusion flame reactor. Combust Flame 78:287–298

    Article  CAS  Google Scholar 

  • Zhang HX, Yang BQ, Feng PX (2008) Ambient pressure synthesis of nanostructured tungsten oxide crystalline films. J Nanomater 2008:1–5

    Google Scholar 

  • Zhou J, Gong L, Deng SZ, Cheng J, She JC, Xu NS (2005) Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett 87:223108-1–223108-3

    Google Scholar 

  • Zhou Y, Zhang Y, Li R (2009) One-step in situ synthesis and characterization of W18O49@carbon coaxial nanocables. J Mater Res 24(5):1833–1841

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of this work by the National Science Foundation through the Collaborative Research Grants CTS-0854433 and CTS-0854006 is gratefully acknowledged. The authors would like to extend special thanks to Dr. Alan Nicholls and Dr. Ke-Bin Low from the UIC Research Resource Center for assistance in TEM studies, encouragement, and helpful discussions. We would also like to thank Mr. Gregory Strout from the Samuel Roberts Noble Electron Microscopy Laboratory at the University of Oklahoma for help with high-resolution studies on the JEOL-2010F field emission TEM. We would also like to thank Dr. Andrew Madden from the School of Geology and Geophysics at the University of Oklahoma for help with XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Merchan-Merchan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 406 kb)

Supplementary material 2 (PPT 406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchan-Merchan, W., Saveliev, A.V., Sanmiguel, S.G. et al. Flame volume synthesis of carbon-coated WO3 nanoplatelets and nanorods. J Nanopart Res 14, 1276 (2012). https://doi.org/10.1007/s11051-012-1276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1276-8

Keywords

Navigation