Skip to main content
Log in

Water-phase synthesis of ordered hierarchical copper tetranitrophthalocyanine bundles with desirable superhydrophobicity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hierarchical fascine-like bundles of copper(II) 1,8,15,22-tetranitrophthalocyanine were prepared by an water-phase method, and showed desirable superhydrophobic characteristics without additional surface modification. Prominent advantages of this approach include: the use of water as reaction solvent obviously avoid environmental problems associated with organic solvents and the directly obtained hierarchical structures could be used as superhydrophobic materials. Based on the investigation of various experiment conditions, including additives, copper powders and reaction time, a growth and assembly mechanism has been proposed, that it follows a self-assembly and oriented attachment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  • Achar BN, Fohlen GM, Parker JA, Keshavayya J (1987) Synthesis and structural studies of metal(II) 4,9,16,23-phthalocyanine tetraamines. Polyhedron 6(6):1463–1467

    Article  CAS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:0546–0550. doi:10.1039/tf9444000546

    Article  CAS  Google Scholar 

  • Clifford C. Leznoff, Lever ABP (eds) (1989–1996) Phthalocyanines properties and applications, vol 1–4. VCH, New York

  • de Oteyza DG, Barrena E, Ossó JO, Sellner S, Dosch H (2006) Thickness-dependent structural transitions in fluorinated copper-phthalocyanine (F16CuPc) films. J Am Chem Soc 128(47):15052–15053. doi:10.1021/ja064641r

    Article  Google Scholar 

  • Elemans JAAW, van Hameren R, Nolte RJM, Rowan AE (2006) Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv Mater 18(10):1251–1266. doi:10.1002/adma.200502498

    Article  CAS  Google Scholar 

  • Erbil HY, Demirel AL, Avcı Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611):1377–1380. doi:10.1126/science.1078365

    Article  CAS  Google Scholar 

  • Kharisov BI, Coronado CEC, Cerda KPC, Méndez UO, Guzmán JAJ, Patlán LAR (2004) Use of elemental metals in different grade of activation for phthalocyanine preparation. Inorg Chem Commun 7(12):1269–1272. doi:10.1016/j.inoche.2004.10.006

    Article  CAS  Google Scholar 

  • Lei S, Deng K, Ma Z, Huang W, Wang C (2011) Templated assembling of phthalocyanine arrays along a polymer chain. Chem Commun 47(31):8829–8831

    Article  CAS  Google Scholar 

  • Leznoff CC, D’Ascanio AM, Yildiz SZ (2000) Phthalocyanine formation using metals in primary alcohols at room temperature. J Porphyr Phthalocyanines 4(1):103–111. doi:10.1002/(sici)1099-1409(200001/02)4:1<103:aid-jpp209>3.0.co;2-e

    Article  CAS  Google Scholar 

  • Li J, Wang S, Li S, Wang Q, Qian Y, Li X, Liu M, Li Y, Yang G (2008) One-pot synthesis and self-assembly of copper phthalocyanine nanobelts through a water-chemical route. Inorg Chem 47(4):1255–1257. doi:10.1021/ic7018583

    Article  CAS  Google Scholar 

  • Liu Y, Ji Z, Tang Q, Jiang L, Li H, He M, Hu W, Zhang D, Wang X, Wang C, Zhu D (2005) Particle-size control and patterning of a charge-transfer complex for nanoelectronics. Adv Mater 17(24):2953–2957. doi:10.1002/adma.200500809

    Article  CAS  Google Scholar 

  • Ma P, Bai Z, Gao Y, Wang Q, Kan J, Bian Y, Jiang J (2011) Helical nano-structures self-assembled from dimethylaminoethyloxy-containing unsymmetrical octakis-substituted phthalocyanine derivatives. Soft Matter 7(7):3417–3422

    Article  CAS  Google Scholar 

  • Myers D (2005) Surfactant science and technology, 3rd edn. Wiley-VCH, New York

    Book  Google Scholar 

  • Negrimovskii VM, Derkacheva VM, Kaliya OL, Lukyanets EA (1991) Phthalocyanines and related compounds. Part 32. Synthesis and some properties of tetra- (II), (IV) and octanitro-substituted phthalocyanines (VI). Zh Obshch Khim 61(2):460–470

    CAS  Google Scholar 

  • Ogihara H, Okagaki J, Saji T (2011) Facile fabrication of colored superhydrophobic coatings by spraying a pigment nanoparticle suspension. Langmuir 27(15):9069–9072. doi:10.1021/la200898z

    Article  CAS  Google Scholar 

  • Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281(5379):969–971

    Article  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117. doi:10.1126/science.1058495

    Article  CAS  Google Scholar 

  • Shaabani A, Safari N, Bazgir A, Bahadoran F, Sharifi N, Rajabali Jamaat P (2003) Synthesis of the tetrasulfo- and tetranitrophthalocyanine complexes under solvent-free and reflux conditions using microwave irradiation. Synth Commun 33(10):1717–1725. doi:10.1081/scc-120018933

    Article  CAS  Google Scholar 

  • Shirtcliffe NJ, McHale G, Atherton S, Newton MI (2010) An introduction to superhydrophobicity. Adv Colloid Interface Sci 161(1–2):124–138. doi:10.1016/j.cis.2009.11.001

    Article  CAS  Google Scholar 

  • Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38(8):644–652. doi:10.1021/ar040224c

    Article  CAS  Google Scholar 

  • Tang QX, Tong YH, Hu WP, Wan Q, Bjornholm T (2009) Assembly of nanoscale organic single-crystal cross-wire circuits. Adv Mater 21(42):4234–4237. doi:10.1002/adma.200901355

    Article  CAS  Google Scholar 

  • Thomas AL (1990) Phthalocyanine research and applications. CRC Press, Boca Raton

    Google Scholar 

  • Van Keuren E, Bone A, Ma C (2008) Phthalocyanine nanoparticle formation in supersaturated solutions. Langmuir 24(12):6079–6084. doi:10.1021/la800290s

    Article  Google Scholar 

  • Wang Y, Liang D (2010) Solvent-stabilized photoconductive metal phthalocyanine nanoparticles: preparation and application in single-layered photoreceptors. Adv Mater 22(13):1521–1525. doi:10.1002/adma.200903120

    Article  CAS  Google Scholar 

  • Zhang X-F, Xi Q, Zhao J (2010) Fluorescent and triplet state photoactive J-type phthalocyanine nano assemblies: controlled formation and photosensitizing properties. J Mater Chem 20(32):6726–6733

    Article  CAS  Google Scholar 

  • Zhang M, Shao C, Guo Z, Zhang Z, Mu J, Cao T, Liu Y (2011) Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl Mater Interfaces 3(2):369–377. doi:10.1021/am100989a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 81001696, 21101167), and “Western Light” Program of the Chinese Academe of Sciences (No. XBBS200815, XBBS200817).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Li or Guoqiang Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4948 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wang, S., Li, S. et al. Water-phase synthesis of ordered hierarchical copper tetranitrophthalocyanine bundles with desirable superhydrophobicity. J Nanopart Res 14, 1273 (2012). https://doi.org/10.1007/s11051-012-1273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1273-y

Keywords

Navigation