Skip to main content
Log in

Numerical analysis of nanoparticle behavior in a microfluidic channel under dielectrophoresis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This article analyzes the behavior of a nanoparticle suspension in a dense and viscous fluid under dielectrophoresis (DEP), a phenomenon which induces spatial movement, depending on the dielectric properties of the particles and the surrounding medium. The dielectrophoretic forces and the nanoparticle concentration profile in a DEP-based separation micro system, consisting of a microchannel, were numerically investigated using a finite element code. In particular, the trajectories described by the particle movement for a planar electrode array configuration were simulated, and the vertical variation of the dielectrophoretic force, as a function of the rectangular electrodes’ height, was analyzed. This article shows how, by carefully selecting the design parameters of several microchannel devices, one can extend the applications of DEP phenomena to the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abboud H, El Chami F, Sayah T (2011) A priori and a posteriori estimates for three-dimensional Stokes equations with nonstandard boundary conditions. Numer Methods Partial Differ Equ. doi:10.1002/num.20676, http://hal.archives-ouvertes.fr/hal-00442468

  • Castellanos A, Ramos A, Gonzales G, Green NG, Morgan H (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36:2584–2597, PII: S0022-3727(03)63619-3

    Google Scholar 

  • Chu K-HW (2008) Study of the electric potential inside wavy-rough annuli interface. Electrochim Acta 53:4920–4926. doi:10.1016/j.electacta.2008.02.017

    Article  CAS  Google Scholar 

  • Crews N, Darabi J, Voglewede P, Guo F, Bayoumi A (2007) An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics. Sens Actuators, B 125:672–679

    Article  Google Scholar 

  • Grebenkov DS, Filoche M, Sapoval B (2006) Mathematical basis for a general theory of Laplacian transport towards irregular interfaces. Phys Rev E 73:021103-1–021103-9, doi:10.1103/PhysRevE.73.021103

  • Green NG, Morgan H (1998) Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces. J Phys D Appl Phys 31:L25-L30, PII: S0022-3727(98)90251-0

  • Green NG, Ramos A, Morgan H (2002) Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J Electrostat 56:235–254

    Article  Google Scholar 

  • Hamed MA, Yariv E (2009) Induced-charge electrokinetic flows about polarizable nano-particles: the thick-Debye-layer limit. J Fluid Mech 627:341–360. doi:10.1017/S0022112009005965

    Article  Google Scholar 

  • Hecht F, Pironneau O (2012) FreeFEM ++. Available online at http://www.freefem.org

  • Holmes D, Green NG, Morgan H (2003) Microdevices for dielectrophoretic flow-through cell separation. IEEE Eng Med Biol Magaz 22:85–90. doi:10.1109/MEMB.2003.1266051

    Article  Google Scholar 

  • Hughes MP (2000) AC electrokinetics: applications for nanotechnology. Nanotechnology 11. doi:10.1088/0957-4484/11/2/314

  • Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Magaz 22:33–42. doi:10.1109/MEMB.2003.1304999

    Article  Google Scholar 

  • Lamoreaux SK (2005) The Casimir force: background, experiments and applications. Rep Prog Phys 68:201–236. doi:10.1088/0034-4885/68/1/R04

    Article  Google Scholar 

  • Lin P, Liu C, Zhang H (2007) An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J Comput Phys 227:1411–1427. doi:10.1016/j.jcp.2007.09.005

    Article  Google Scholar 

  • Lungu M, Neculae A, Bunoiu M (2010) Some considerations on the dielectrophoretic manipulation of nanoparticles in fluid media. J Optoelectron Adv Mater 12:2423–2426

    CAS  Google Scholar 

  • Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. In: Research Studies Ltd. Baldock, Hertfordshire, 50–62, 200–210

  • Pethig R (2010) Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811-1–02281-34. doi:10.1063/1.3456626

  • Rao L, Reddy NK, Coulombe S, Meunier JL, Munz RJ (2007) Carbon nanotubes as nanoparticles collector. J Nanopart Res 9:689–695. doi:10.1007/s11051-006-9175-5

    Article  CAS  Google Scholar 

  • Shklyaev S, Straube AV (2008) Particle entrapment in a fluid suspension as a feedback effect. New J Phys 10:063030. doi:10.1088/1367-2630/10/6/063030

    Article  Google Scholar 

  • Zhang C, Khoshmanesh K, Mitchell A, Kalantar-Zadeh K (2010) Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396:401–420. doi:10.1007/s00216-009-2922-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, project number PN-II-ID-PCE-2011-3-0762. C. G. Biris was partially supported by the grant FP7-REGPOT-2011-1-284595 (HOST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail Lungu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neculae, A., Biris, C.G., Bunoiu, M. et al. Numerical analysis of nanoparticle behavior in a microfluidic channel under dielectrophoresis. J Nanopart Res 14, 1154 (2012). https://doi.org/10.1007/s11051-012-1154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1154-4

Keywords

Navigation