Skip to main content
Log in

Manipulation and Joule heat welding of Ag nanowires prepared by atomic migration

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ag nanowires (NWs) with diameters of about 200 nm and length of 2–7 μm are prepared on a substrate by an atomic migration called stress-induced migration and are picked up from the substrate with electrostatic forces. The Ag NWs are then offered for the welding experiment in a scanning electron microscope and successfully welded together using Joule heating introduced into the NWs by supplying the constant direct current. It is discovered that the welding of Ag NWs is achieved under the current supply in a self-completed manner. The conditions for successful Joule heat welding are analyzed by the parameter that governs the melting phenomenon at the nanocontacts of two NWs. From the experiment and the analysis, electromigration, i.e., another type of atomic migration due to higher electron flow, is found to be occurred during the welding and this is considered to enhance the welding performance of two NWs with Joule heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhattacharyya SR, Datta D, Shyjumon I, Smirnov BM, Chini TK, Ghose D, Hippler R (2009) Growth and melting of silicon supported silver nanocluster films. J Phys D Appl Phys 42:035306

    Article  Google Scholar 

  • Blech IA (1976) Electromigration in thin aluminum films on titanium nitride. J Appl Phys 47:1203–1208

    Article  CAS  Google Scholar 

  • Blech IA, Petroff PM, Tai KL, Kumar V (1975) Whisker growth in Al thin films. J Cryst Growth 32:161–169

    Article  Google Scholar 

  • Dong L, Tao X, Zhang L, Zhang X, Nelson BJ (2007) Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett 7:58–63

    Article  CAS  Google Scholar 

  • Fukui S, Tohmyoh H (2011) Tip to side welding of ultrathin Pt wires by Joule heating. Jpn J Appl Phys 50:057201

    Article  Google Scholar 

  • Hirayama H, Kawamoto Y, Ohshima Y, Takayanagi K (2001) Nanospot welding of carbon nanotubes. Appl Phys Lett 79:1169

    Article  CAS  Google Scholar 

  • Hoshino K, Hitsuoka Y (2005) One-step template-free electrosynthesis of cobalt nanowires from aqueous [Co(NH3)6]Cl3 solution. Electrochem Commun 7:821–828

    Article  CAS  Google Scholar 

  • Hu J, Ouyang M, Yang P, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51

    Article  CAS  Google Scholar 

  • Jin C, Suenaga K, Iijima S (2007) Plumbing carbon nanotubes. Nat Nanotechnol 3:17–21

    Article  Google Scholar 

  • Kim SJ, Jang D-J (2005) Laser-induced nanowelding of gold nanoparticles. Appl Phys Lett 86:033112

    Article  Google Scholar 

  • Lee FY, Fung KH, Tang TL, Tam WY, Chan CT (2009) Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography. Curr Appl Phys 9:820–825

    Article  Google Scholar 

  • Lu L, Sui ML, Lu K (2000) Superplastic extensibility of nanocrystalline copper at room temperature. Science 287:1463–1466

    Article  CAS  Google Scholar 

  • Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5:218–224

    Article  CAS  Google Scholar 

  • Padgett CW, Brenner DW (2004) Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett 4:1051–1053

    Article  CAS  Google Scholar 

  • Peng Y, Cullis T, Inkson B (2009) Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett 9:91–96

    Article  CAS  Google Scholar 

  • Sacharoff AC, Westervelt RM (1984) Physical properties of ultrathin drawn Pt wires. Phys Rev B 29:6411–6418

    Article  CAS  Google Scholar 

  • Saka M, Yamaya F, Tohmyoh H (2007) Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scr Mater 56:1031–1034

    Article  CAS  Google Scholar 

  • Sasagawa K, Naito K, Saka M, Abé H (1999) A method to predict electromigration failure of metal lines. J Appl Phys 86:6043–6051

    Article  CAS  Google Scholar 

  • Sun Y, Rogers JA (2004) Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett 4:1953–1959

    Article  CAS  Google Scholar 

  • Tan S, Tang Z, Liang X, Kotov NA (2004) Resonance tunneling diode structures on CdTe nanowires made by conductive AFM. Nano Lett 4:1637–1641

    Article  CAS  Google Scholar 

  • Thong JTL, Oon CH, Yeadon M, Zhang DW (2002) Field-emission induced growth of nanowires. Appl Phys Lett 81:4823

    Article  CAS  Google Scholar 

  • Tohmyoh H (2009) A governing parameter for the melting phenomenon at nanocontacts by Joule heating and its application to joining together two thin metallic wires. J Appl Phys 105:014907

    Article  Google Scholar 

  • Tohmyoh H, Fukui S (2009) Self-completed Joule heat welding of ultrathin Pt wires. Phys Rev B 80:155403

    Article  Google Scholar 

  • Tohmyoh H, Imaizumi T, Hayashi H, Saka M (2007) Welding of Pt nanowires by Joule heating. Scr Mater 57:953–956

    Article  CAS  Google Scholar 

  • Tohmyoh H, Yasuda M, Saka M (2010) Controlling Ag whisker growth using very thin metallic films. Scr Mater 63:289–292

    Article  CAS  Google Scholar 

  • Tsukatani Y, Yamasaki N, Murakami K, Wakaya F, Takai M (2005) Transport properties of Pt nanowires fabricated by beam-induced deposition. Jpn J Appl Phys 44:5683–5686

    Article  CAS  Google Scholar 

  • Wang ZL, Petroski JM, Green TC, El-Sayed MA (1998) Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B 102:6145–6151

    Article  CAS  Google Scholar 

  • Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM (2001) Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293:1455–1457

    Article  CAS  Google Scholar 

  • Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529

    Article  CAS  Google Scholar 

  • Xia X, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  • Xu S, Tian M, Wang J, Xu J, Redwing JM, Chan MHW (2005) Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1:1221–1229

    Article  CAS  Google Scholar 

  • Yu MF, Dyer MJ, Skidmore GD, Rohrs HW, Lu XK, Ausman KD, Ehr JRV, Ruoff RS (1999) Three-dimensional manipulation of carbon nanoturbes under a scanning electron microscope. Nanotechnology 10:244–252

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Professor Masumi Saka for valuable discussions throughout this study. This study was supported by Grand-in-Aid for Young Scientists (A) No. 24686016 and by Grand-in-Aid for Scientific Research (B) No. 23360050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Tohmyoh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohmyoh, H., Fukui, S. Manipulation and Joule heat welding of Ag nanowires prepared by atomic migration. J Nanopart Res 14, 1116 (2012). https://doi.org/10.1007/s11051-012-1116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1116-x

Keywords

Navigation