Skip to main content
Log in

Influence of different synthesis approach on doping behavior of silver nanoparticles onto the iron oxide–silica coreshell surfaces

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver (Ag) nanoparticles with the crystallite size ranging from 13–24 nm were successfully doped onto the surface of iron oxide–silica coreshell particles. In the process, iron oxide particles having a size distribution within 8–19 nm were prepared by using a reverse co-precipitation method followed by the formation of iron oxide-core with silica shell (with 50–150 nm diameter of silica spheres) by using a modified Stöber method. The reduction of Ag ions was done at room temperature in a solution containing polyvinylpyrrolidone and ethanol by using mechanical and ultrasonic mixing. Four different synthesis approaches were used in doping of Ag nanoparticles. The phase, morphology, optical and magnetic properties of the synthesized powders were characterized by using X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope, UV–visible spectrometer (UV–Vis) and vibrating sample magnetometer. Spherical morphology of the Ag nanoparticles was found to deposit on the iron oxide-silica surfaces. The particle size distribution is depending on the synthesis approach used. The UV–Vis absorption peak at 404–410 nm of wavelength confirmed the existence of the Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bragg WH (1915) The structure of magnetite and the spinels. Nature 95:561

    Article  Google Scholar 

  • Carotenuto G, Pepe GP, Nicolais L (2000) Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur Phys J B 11:11–17

    Article  Google Scholar 

  • Chiswick HH, Hultgren R (1940) An X-ray study of the alloys of silver with lead bismuth and thallium. Trans Am Inst Min Metall Pet Eng 137:442–446

    Google Scholar 

  • Choi O, Deng KK, Kim N-J, Ross JL, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  • Choi M, Shin K-H, Jang J (2010) Plasmonic photocatalyst system using silver chloride/silver nanostructures under visible light. J Colloid Interface Sci 341:83–87

    Article  CAS  Google Scholar 

  • Chou K-S, Ren C-Y (2000) Synthesis of nanosize silver nanoparticle by chemical reduction method. Mater Chem Phys 64:241–246

    Article  CAS  Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221–1231

    Article  CAS  Google Scholar 

  • Flores JC, Torres V, Popa M, Crespo D, Calderon-Moreno JM (2008) Variations in morphologies of silver nanoshells on silica spheres. Colloids Surf A 330:86–90

    Google Scholar 

  • Guzenko NV, Pakhlov EM, Lipkovskaya NA, Voronin EF (2001) Sorption modification of fine silica with polyvinypyrrolidone. Russ J Appl Chem 74:2017–2020

    Article  CAS  Google Scholar 

  • He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786

    Article  CAS  Google Scholar 

  • Hoppe CE, Lazzari M, Pardinas-Blanco I, Lopez-Quintella MA (2006) One-step synthesis of gold and silver hydrolysis using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22:7027–7034

    Article  CAS  Google Scholar 

  • Hu H, Wang Z, Pan L, Zhao S, Zhu S (2010) Ag-coated Fe3O4-SiO2 three-ply composite microspheres: synthesis, characterization and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 144:7738–7742

    Article  Google Scholar 

  • Huang C-K, Chen C-Y, Han J-L, Chen C–C, Jiang M-D, Hsu J-S, Chan C-H, Hsieh K-H (2010) Immobilization of silver nanoparticles on silica microspheres. J Nanopart Res 12:199–207

    Article  CAS  Google Scholar 

  • Jiang J, Zhang L (2011) Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag, and its daylight-driven plasmonic photocatalysis. Chem Eur J 17:3710–3717

    Article  CAS  Google Scholar 

  • Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735

    Article  CAS  Google Scholar 

  • Jun B-H, Noh MS, Kim J, Kim G, Kang H, Kim M-S, Seo Y-T, Baek J, Kim J-H, Park J, Kim S, Kim Y-K, Hyeon T, Cho M-H, Jeong DH, Lee Y-S (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their application. Small 6:119–125

    Article  CAS  Google Scholar 

  • Kalele SA, Ashtaputre SS, Hebalkar NY, Gosai SW, Deobangkar DN, Deobangkar DD, Kulkarni SS (2005) Optical detection of antibody using silica-silver core-shell particles. Chem Phys Lett 404:136–141

    Article  CAS  Google Scholar 

  • Kim JS (2007) Reduction of silver nitrate in ethanol by poly(N-vinyllpyrrolidone). J Ind Eng Chem 13:566–570

    CAS  Google Scholar 

  • Lee J-M, Kim D-W, Kim T-H, Oh S-G (2007) Facile route for preparation of silica-silver heterogeneous nanocomposites particles using alcohol reduction method. Mater Lett 61:1558–1562

    Article  CAS  Google Scholar 

  • Lu Z, Dai J, Song X, Wang G, Yang W (2008) Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf A 317:450–456

    Article  CAS  Google Scholar 

  • Luo N, Mao L, Jiang L, Zhang J, Wu Z, Wu D (2009) Directly ultraviolet photochemical deposition of silver nanoparticles on silica spheres: preparation and characterization. Mater Lett 63:154–156

    Article  CAS  Google Scholar 

  • Lv B, Xu Y, Tian H, Wu D, Sun Y (2010) Synthesis of Fe3O4/SiO2/Ag nanoparticles and its application in surface-enhanced Raman scattering. J Solid State Chem 183:2968–2973

    Google Scholar 

  • Mahmed N, Heczko O, Söderberg O, Hannula S-P (2011) Room temperature synthesis of magnetite (Fe3-δO4) nanoparticles by a simple reverse co-precipitation method. IOP Conf Ser Mater Sci Eng 18:032020

    Article  Google Scholar 

  • Pal A, Shah S, Devi S (2009) Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys 114:530–532

    Article  CAS  Google Scholar 

  • Quang DV, Sarawade PB, Hilonga A, Park SD, Kim J-K, Kim HT (2011) Facile route for preparation of silver nanoparticle-coated precipitated silica. Appl Surf Sci 257:4250–4256

    Article  CAS  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L.). Nano Biomed Eng 3:174–178

    CAS  Google Scholar 

  • Royer L (1925) Sur les accolements réguliers de cristaux d’espéces différentes. C R Hebd Seances Acad Sci 180:2050–2052

    CAS  Google Scholar 

  • Sileikaite A, Prosycevas I, Puiso J, Juraitis A, Guobiene A (2006) Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci 12:287–291

    Google Scholar 

  • Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326

    Article  CAS  Google Scholar 

  • Toki M, Chow TY, Ohnaka T, Samura H, Saegusa T (1992) Structure of poly(vinylpyrrolidone)–silica hybrid. Polym Bull 29:653–660

    Article  Google Scholar 

  • Wiley BJ, Im SH, Z-Y L, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675

    Article  CAS  Google Scholar 

  • Wu C, Mosher BP, Lyons K, Zeng T (2010) Reducing ability and mechanism for polyvinylpyrrolidone (PVP) in silver nanoparticles synthesis. J Nanosci Nanotechnol 10:2342–2347

    Article  CAS  Google Scholar 

  • Xu R, Wang D, Zhang J, Li Y (2006) Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem Asian J 1:888–893

    Article  CAS  Google Scholar 

  • Ye X, Zhou Y, Chen J, Sun Y (2007) Deposition of silver nanoparticles on silica spheres via ultrasound irradiation. Appl Surf Sci 253:6264–6267

    Article  CAS  Google Scholar 

  • Zhang DB, Cheng HM, Ma JM (2001) Synthesis of silver-coated silica nanoparticles in nonionic reverse micelles. J Mater Sci Lett 20:439–440

    Article  CAS  Google Scholar 

  • Zhang X, Niu H, Yan J, Cai Y (2011) Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf A 375:186–192

    Article  CAS  Google Scholar 

  • Zhu M, Chen P, Liu M (2011) Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: enhanced catalytic performance by morphology selection. J Mater Chem 21:16413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of Finnish Academy via the Graduate School of Advanced Materials and Processes at Aalto University to N. Mahmed is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norsuria Mahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmed, N., Jiang, H., Heczko, O. et al. Influence of different synthesis approach on doping behavior of silver nanoparticles onto the iron oxide–silica coreshell surfaces. J Nanopart Res 14, 987 (2012). https://doi.org/10.1007/s11051-012-0987-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0987-1

Keywords

Navigation