Skip to main content
Log in

Synthesis of Silica-Coated Silver-Cobalt Ferrite Nanoparticles for Biomedical Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, a series of silver-substituted cobalt ferrite (AgxCo1-xFe2O4, 0 ≤ x ≤ 0.1) nanoparticles (NPs) were synthesized, and then a sample with monophase structure and optimum magnetic properties was coated with an amorphous silica layer. First, Ag-substituted Co-ferrite NPs were synthesized via a sol-gel auto combustion method from aqueous metal nitrates solutions. Then, all the powders were characterized by several techniques such as X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), and vibrating sample magnetometry (VSM). These results showed that when the Ag content was between 0 and 0.08, the synthesized powders were the cubic spinel structure, having spherical-shaped particles with an average size of about 20–25 nm. Afterward, the silica coating was applied on the surfaces of the selected sample (i.e., Ag0.08Co0.92Fe2O4 NPs with monophase structure and optimum magnetic properties) by a sol-gel approach based on the Stöber process from the tetraethyl orthosilicate (TEOS) as the precursor of silica. Transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and zeta potential investigations were used to study the characteristics of the silica-coated Ag-Co-ferrite NPs. The results of FTIR and TEM analyses confirmed the presence of the silica coating on the surfaces of the Ag-Co-ferrite NPs. Although the silica-coated sample showed the saturation magnetization (MS) value slightly lower than that of the uncoated one, however, its magnetic properties are suitable for use in different biomedical applications. Also, a water-based suspension containing the silica-coated Ag-Co-ferrite NPs showed a more negative zeta potential value at the pH of 7 in comparison with a suspension containing uncoated ones. Therefore, it can be concluded that the synthesized silica-coated Ag0.08Co0.92Fe2O4 NPs in this study could be considered as a good candidate for the preparation of biomedical ferrofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amiri, S., Shokrollahi, H.: The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C. 33, 1–8 (2013)

    Google Scholar 

  2. Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007)

    ADS  Google Scholar 

  3. Hyeon, T., Chung, Y., Park, J., Lee, S.S., Kim, Y.W., Park, B.H.: Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J. Phys. Chem. B. 106, 6831–6833 (2002)

    Google Scholar 

  4. Satheeshkumar, M.K., Kumar, E.R., Srinivas, C., Suriyanarayanan, N., Deepty, M., Prajapat, C.L., Rao, T.V.C., Sastry, D.L.: Study of structural, morphological and magnetic properties of Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity. J. Magn. Magn. Mater. 469, 691–697 (2019)

    ADS  Google Scholar 

  5. Abdelhamid, H.N., Talib, A., Wu, H.-F.: Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv. 5, 34594–34602 (2015)

    Google Scholar 

  6. Kooti, M., Saiahi, S., Motamedi, H.: Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J. Magn. Magn. Mater. 333, 138–143 (2013)

    ADS  Google Scholar 

  7. Husanu, E., Chiappe, C., Bernardini, A., Cappello, V., Gemmi, M.: Synthesis of colloidal Ag nanoparticles with citrate based ionic liquids as reducing and capping agents. Colloids Surf. A Physicochem. Eng. Asp. 538, 506–512 (2018)

    Google Scholar 

  8. Wu, W., He, Q., Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)

    ADS  Google Scholar 

  9. Sun, C., Lee, J.S., Zhang, M.: Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265 (2008)

    Google Scholar 

  10. Zahraei, M., Marciello, M., Lazaro-Carrillo, A., Villanueva, A., Herranz, F., Talelli, M., Costo, R., Monshi, A., Shahbazi-Gahrouei, D., Amirnasr, M., Behdadfar, B.: Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers. Nanotechnology. 27, 255702 (2016)

    ADS  Google Scholar 

  11. Lee, S.-W., Drwiega, J., Mazyck, D., Wu, C.-Y., Sigmund, W.M.: Synthesis and characterization of hard magnetic composite photocatalyst—barium ferrite/silica/titania. Mater. Chem. Phys. 96, 483–488 (2006)

    Google Scholar 

  12. Chung, Y.S., Park, S.B., Kang, D.-W.: Magnetically separable titania-coated nickel ferrite photocatalyst. Mater. Chem. Phys. 86, 375–381 (2004)

    Google Scholar 

  13. Zhang, H., Hou, R., Lu, Z.-L., Duan, X.: A novel magnetic nanocomposite involving anatase titania coating on silica-modified cobalt ferrite via lower temperature hydrolysis of a water-soluble titania precursor. Mater. Res. Bull. 44, 2000–2008 (2009)

    Google Scholar 

  14. Nadeem, K., Shahid, M., Mumtaz, M.: Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles. Prog. Nat. Sci. Mater. Int. 24, 199–204 (2014)

    Google Scholar 

  15. Mojić, B., Giannakopoulos, K.P., Cvejić, Ž., Srdić, V.V.: Silica coated ferrite nanoparticles: influence of citrate functionalization procedure on final particle morphology. Ceram. Int. 38, 6635–6641 (2012)

    Google Scholar 

  16. Rachna, N.B., Singh, A.A.: Preparation, characterization, properties and applications of nano zinc ferrite. Materials Today: Proceedings. 5 ( 9148–9155 (2018)

    Google Scholar 

  17. Chakradhary, V.K., Ansari, A., Akhtar, M.J.: Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications. J. Magn. Magn. Mater. 469, 674–680 (2019)

    ADS  Google Scholar 

  18. Dabagh, S., Ati, A.A., Rosnan, R.M., Zare, S., Othaman, Z.: Effect of Cu–Al substitution on the structural and magnetic properties of Co ferrites. Mater. Sci. Semicond. Process. 33, 1–8 (2015)

    Google Scholar 

  19. Dabagh, S., Chaudhary, K., Haider, Z., Ali, J.: Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method. Results Phys. 8, 93–98 (2018)

    ADS  Google Scholar 

  20. Faraji, S., Dini, G., Zahraei, M.: Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging. J. Magn. Magn. Mater. 475, 137–145 (2019)

    ADS  Google Scholar 

  21. Chen, D.-H., He, X.-R.: Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull. 36, 1369–1377 (2001)

    Google Scholar 

  22. Srivastava, M., Chaubey, S., Ojha, A.K.: Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater. Chem. Phys. 118, 174–180 (2009)

    Google Scholar 

  23. Maaz, K., Karim, S., Mumtaz, A., Hasanain, S., Liu, J., Duan, J.: Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J. Magn. Magn. Mater. 321, 1838–1842 (2009)

    ADS  Google Scholar 

  24. Mathew, D.S., Juang, R.-S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Google Scholar 

  25. Gee, S.H., Hong, Y.K., Park, M.H., Erickson, D.W., Lamb, P.J., Sur, J.C.: Synthesis of nanosized (Li 0.5 x Fe 0.5 x Zn 1− x) Fe 2 O 4 particles and magnetic properties. J. Appl. Phys. 91, 7586–7588 (2002)

    ADS  Google Scholar 

  26. Wang, D., Zhou, J., Zhou, X., Ke, X.B., Chen, C., Wang, Y.R., Liu, Y.L., Ren, L.: Facile ultrafast microwave synthesis of monodisperse MFe2O4 (M= Fe, Mn, Co, Ni) superparamagnetic nanocrystals. Mater. Lett. 136, 401–403 (2014)

    Google Scholar 

  27. Wu, S., Sun, A., Xu, W., Zhang, Q., Zhai, F., Logan, P., Volinsky, A.A.: Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method. J. Magn. Magn. Mater. 324, 3899–3905 (2012)

    ADS  Google Scholar 

  28. Gul, I., Maqsood, A.: Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J. Alloys Compd. 465, 227–231 (2008)

    Google Scholar 

  29. Bazuła, P.A., Arnal, P.M., Galeano, C., Zibrowius, B., Schmidt, W., Schüth, F.: Highly microporous monodisperse silica spheres synthesized by the Stöber process. Microporous Mesoporous Mater. 200, 317–325 (2014)

    Google Scholar 

  30. Gholami, T., Salavati-Niasari, M., Bazarganipour, M., Noori, E.: Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand. Superlattice. Microst. 61, 33–41 (2013)

    ADS  Google Scholar 

  31. Mahajan, P., Sharma, A., Kaur, B., Goyal, N., Gautam, S.: Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum. 161, 389–397 (2019)

    Google Scholar 

  32. Lutterotti, L., Chateigner, D., Ferrari, S., Ricote, J.: Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films. 450, 34–41 (2004)

    ADS  Google Scholar 

  33. Lutterotti, L.: Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B. 268, 334–340 (2010)

    ADS  Google Scholar 

  34. Okasha, N.: Influence of silver doping on the physical properties of Mg ferrites. J. Mater. Sci. 43, 4192–4197 (2008)

    ADS  Google Scholar 

  35. Xavier, S., Cleetus, H., Nimila, P., Thankachan, S., Sebastian, R., Mohammed, E.: Structural and antibacterial properties of silver substituted cobalt ferrite nanoparticles. Res. J. Pharm., Biol. Chem. Sci. 5, 364–371 (2014)

    Google Scholar 

  36. Ruthradevi, T., Akbar, J., Suresh Kumar, G., Thamizhavel, A., Kumar, G.A., Vatsa, R.K., Dannangoda, G.C., Martirosyan, K.S., Girija, E.K.: Investigations on nickel ferrite embedded calcium phosphate nanoparticles for biomedical applications. J. Alloys Compd. 695, 3211–3219 (2017)

    Google Scholar 

  37. Sanpo, N., Berndt, C.C., Wen, C., Wang, J.: Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 9, 5830–5837 (2013)

    Google Scholar 

  38. Mansour, S.F., Hemeda, O.M., Abdo, M.A., Nada, W.A.: Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites. J. Mol. Struct. 1152, 207–214 (2018)

    ADS  Google Scholar 

  39. Sánchez, J., Cortés-Hernández, D.A., Rodríguez-Reyes, M.: Synthesis of TEG-coated cobalt-gallium ferrites: characterization and evaluation of their magnetic properties for biomedical devices. J. Alloys Compd. (2018)

  40. Al-Oweini, R., El-Rassy, H.: Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 919, 140–145 (2009)

    ADS  Google Scholar 

  41. Iqbal, Y., Bae, H., Rhee, I., Hong, S.: Magnetic heating of silica-coated manganese ferrite nanoparticles. J. Magn. Magn. Mater. 409, 80–86 (2016)

    ADS  Google Scholar 

  42. Das, H., Arai, T., Debnath, N., Sakamoto, N., Shinozaki, K., Suzuki, H., Wakiya, N.: Impact of acidic catalyst to coat superparamagnetic magnesium ferrite nanoparticles with silica shell via sol–gel approach. Adv. Powder Technol. 27, 541–549 (2016)

    Google Scholar 

  43. Stergar, J., Jirák, Z., Veverka, P., Kubíčková, L., Vrba, T., Kuličková, J., Knížek, K., Porcher, F., Kohout, J., Kaman, O.: Mn-Zn ferrite nanoparticles coated with mesoporous silica as core material for heat-triggered release of therapeutic agents. J. Magn. Magn. Mater. 475, 429–435 (2019)

    ADS  Google Scholar 

  44. Milanovic, M., Stijepovic, I., Pavlovic, V., Srdic, V.V.: Functionalization of zinc ferrite nanoparticles: influence of modification procedure on colloidal stability. Process. Appl. Ceram. 10, 287–293 (2016)

    Google Scholar 

  45. Autenrieth, T., Wagner, J., Hempelmann, R., Härtl, W., Robert, A., Grübel, G.: Cobalt ferrite–silica core–shell colloids: a magnetic Yukawa system. Appl. Organomet. Chem. 18, 520–522 (2004)

    Google Scholar 

  46. Plaza, R.C., de Vicente, J., Gómez-Lopera, S., Delgado, A.V.: Stability of dispersions of colloidal nickel ferrite spheres. J. Colloid Interface Sci. 242, 306–313 (2001)

    ADS  Google Scholar 

  47. Ahmad, A., Bae, H., Rhee, I.: Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T2 contrast agents for magnetic resonance imaging. AIP Adv. 8, 055019 (2018)

    ADS  Google Scholar 

  48. Kobayashi, Y., Horie, M., Konno, M., Rodríguez-González, B., Liz-Marzán, L.M.: Preparation and properties of silica-coated cobalt nanoparticles. J. Phys. Chem. B. 107, 7420–7425 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Dini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabagh, S., Dini, G. Synthesis of Silica-Coated Silver-Cobalt Ferrite Nanoparticles for Biomedical Applications. J Supercond Nov Magn 32, 3865–3872 (2019). https://doi.org/10.1007/s10948-019-05172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05172-y

Keywords

Navigation