Skip to main content
Log in

Investigation on microstructure and thermal properties of graphene-nanoplatelet/palmitic acid composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Graphene-nanoplatelets (GNPs) were added into melting palmitic acid (PA) to prepare GNP/PA composites. Experimental results revealed that the temperature has little effect on the thermal conductivity of GNP/PA in either solid state or liquid state. Generally, thermal conductivity of GNP/PA increases with the addition of GNPs. There are two sudden increases in thermal conductivity for GNP/PA. One is at 0.5 wt% where GNPs begin to congregate and the thermal conductivity of GNP/PA increases suddenly. The other is at 5.0 wt% where the GNP aggregates are large enough to contact each other and the thermal conductivity of GNP/PA spurts with more GNP loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Carlsson JM (2007) Graphene: buckle or break. Nat Mater 6:801–802

    Article  CAS  Google Scholar 

  • Chabrier D, Bhushan B, Marsaudon S (2010) Humidity effect on the interaction between carbon nanotubes and graphite. Appl Surf Sci 256:4672–4676

    Article  CAS  Google Scholar 

  • Duong HM, Papavassiliou DV, Mullen KJ, Maruyana S (2008) Computational modeling of the thermal conductivity of single-walled carbon nanotube-polymer composites. Nanotechnology 19(065702):1–8

    Google Scholar 

  • Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9:814–818

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  • Hu M, Shenogin S, Keblinski P (2007) High-performance and electrically stable C60 organic field-effect transistors. Appl Phys Lett 91(241910):1–3

    Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Kasry A, Kuroda MA, Martyna GJ, Tulevski GS, Bol AA (2010) Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano 4:3839–3844

    Article  CAS  Google Scholar 

  • Khan U, O’Connor I, Gun’ko YK, Coleman JN (2010) The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties. Carbon 48:2825–2830

    Article  CAS  Google Scholar 

  • Kotov NA (2006) Materials science: carbon sheet solutions. Nature 442:254–255

    Article  CAS  Google Scholar 

  • Kumar S, Alam M, Murthy J (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 90(104105):1–3

    Google Scholar 

  • Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871–5878

    Article  CAS  Google Scholar 

  • McAllister M, Li J, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  • Meyer JC, Girit CO, Crommie MF, Zettl A (2008) Imaging and dynamics of light atoms and molecules on graphene. Nature 454:319–322

    Article  CAS  Google Scholar 

  • Obraztsov AN (2009) Chemical vapour deposition: making graphene on a large scale. Nat Nanotechnol 4:212–213

    Article  CAS  Google Scholar 

  • Park S, Ruoff R (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  • Patchkovskii S, Tse JS, Yurchenko SN, Zhechkov L, Heine T, Seifert G (2005) Proc Natl Acad Sci 102:10439–10444

    Article  CAS  Google Scholar 

  • Ramanathan T, Abdala AA, Stankovich S, D DA, Herrera-Alons M, Pinar RD, Adamson DH, Schnipp HC, Chen X, Ruoff RS, Nguyen ST (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  CAS  Google Scholar 

  • Schniepp HC, Li JL, McAllister MJ, Sai H, Alonso MH, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. Phys Chem B 110:8535–8539

    Article  CAS  Google Scholar 

  • Stefanos P, Kumar SR, Eduardo F (2007) Topological phases and topological entropy of two-dimensional systems with finite correlation length. Phys Rev B 76(224421):1–17

    Google Scholar 

  • Tombros N, Jozsa C, Popinciuc M, Jonkman HT, Wees BJV (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nat Mater 448:571–575

    Article  CAS  Google Scholar 

  • Vincent CT, Matthew JA, Yang Y, Richard BK (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29

    Article  Google Scholar 

  • Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) J Chem Sci 120:9–13

    Article  CAS  Google Scholar 

  • Wang J, Xie H, Xin Z (2008) Thermal properties of heat storage composites containing multiwalled carbon nanotubes. J Appl Phys 104(113537):1–5

    Google Scholar 

  • Wang J, Xie H, Xin Z, Li Y (2010) Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon 48:3979–3986

    Article  CAS  Google Scholar 

  • Zhong HL, Lukes JR (2006) Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys Rev B 74(125403):1–10

    Google Scholar 

  • Zhu J (2008) Graphene production: new solutions to a new problem. Nat Nanotechnol 3:528–530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (Nos. 50876058 and 20876042), Program for New Century Excellent Talents in University (NCET-10-883), and Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Xin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Xie, H. & Xin, Z. Investigation on microstructure and thermal properties of graphene-nanoplatelet/palmitic acid composites. J Nanopart Res 14, 952 (2012). https://doi.org/10.1007/s11051-012-0952-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0952-z

Keywords

Navigation