Skip to main content
Log in

Self-assembled nanoparticles of p-phenylenediacetonitrile derivatives with fluorescence turn-on

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Absence of emission concentration quenching accompanied by high emission efficiency in a solid state is highly challenging though very attractive, for example, for fabrication of solid state light emitters or fluorescent organic nanoparticles (FONs). Here, formation of FONs based on novel p-phenylenediacetonitrile derivatives by re-precipitation method in aqueous solutions is demonstrated. The exceptionality of the derivatives employed is manifested by nitrile groups-induced steric hindrance effects inhibiting concentration quenching of emission. Consisting of different size and polarity end-groups, phenyl groups in one compound and hexyl-carbazolyl in another, the derivatives were examined and compared in regard to nanoparticle formation morphology, size tunability, spectral signatures, and fluorescence turn-on efficiency. The variation of solvent/non-solvent ratio allowed to achieve tuning of the FON sizes from 55 nm up to 360 nm and resulted in maximal fluorescence on/off ratio of 38. Spectrally resolved confocal fluorescence microscopy revealed somewhat different molecule arrangement in different FONs suggesting dominant amorphous-like phase, which was confirmed by small angle X-ray scattering measurements. The FONs were verified to be stable against degradation or conglomeration into larger clusters at least over a couple of months thus implying their feasibility for practical applications. Finally, potential application of the fluorescent p-phenylenediacetonitrile nanoparticles for organic vapor sensing via fluorescence on/off switching was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • An BK, Kwon SK, Jung SD, Park SY (2002) Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 124:14410–14415. doi:10.1021/ja0269082

    Article  CAS  Google Scholar 

  • An B-K, Kwon S-K, Park SY (2007) Photopatterned arrays of fluorescent organic nanoparticles. Angew Chem 119:2024–2028. doi:10.1002/ange.200604209

    Article  Google Scholar 

  • Arbačiauskienė E, Kazlauskas K, Miasojedovas A et al (2010a) Multifunctional polyconjugated molecules with carbazolyl and pyrazolyl moieties for optoelectronic applications. Synth Met 160:490–498. doi:10.1016/j.synthmet.2009.11.038

    Article  Google Scholar 

  • Arbačiauskienė E, Kazlauskas K, Miasojedovas A et al (2010b) Pyrazolyl-substituted polyconjugated molecules for optoelectronic applications. Dyes Pigment 85:79–85. doi:10.1016/j.dyepig.2009.10.007

    Article  Google Scholar 

  • Asahi T, Sugiyama T, Masuhara H (2008) Laser fabrication and spectroscopy of organic nanoparticles. Acc Chem Res 41:1790–1798. doi:10.1021/ar800125s

    Article  CAS  Google Scholar 

  • Bhongale CJ, Chang C-W, Lee C-S et al (2005) Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J Phys Chem B 109:13472–13482. doi:10.1021/jp0502297

    Article  CAS  Google Scholar 

  • Chan CP, Bruemmel Y, Seydack M et al (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645. doi:10.1021/ac0353740

    Article  CAS  Google Scholar 

  • de Mello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9:230–232. doi:10.1002/adma.19970090308

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, et al (2004) Gaussian 03, revision D. 01. Gaussian Inc.: Wallingford, CT

  • Gao H, Poulsen DA, Ma B et al (2010) Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence. Nano Lett 10:1440–1444. doi:10.1021/nl100347p

    Article  CAS  Google Scholar 

  • Han M, Hara M (2005) Intense fluorescence from light-driven self-assembled aggregates of nonionic azobenzene derivative. J Am Chem Soc 127:10951–10955. doi:10.1021/ja0509275

    Article  CAS  Google Scholar 

  • Herbst W, Hunger K (2004) Industrial organic pigments: production, properties, applications, 3rd edn. Wiley, Weinheim

    Book  Google Scholar 

  • Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388. doi:10.1039/c1cs15113d

    Article  CAS  Google Scholar 

  • Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase: theory, experiment, and use. Angew Chem Int Ed 40:4330–4361. doi:10.1002/1521-3773(20011203)40

    Article  CAS  Google Scholar 

  • Itami K, Ohashi Y, Yoshida J-ichi (2005) Triarylethene-based extended π-systems: programmable synthesis and photophysical properties. J Org Chem 70:2778–2792. doi:10.1021/jo0477401

    Google Scholar 

  • Jang J, Ha J, Cho J (2007) Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv Mater 19:1772–1775. doi:10.1002/adma.200602127

    Article  CAS  Google Scholar 

  • Kietzke T, Neher D, Landfester K et al (2003) Novel approaches to polymer blends based on polymer nanoparticles. Nat Mater 2:408–412. doi:10.1038/nmat889

    Article  CAS  Google Scholar 

  • Kim HY, Bjorklund TG, Lim S-H, Bardeen CJ (2003) Spectroscopic and photocatalytic properties of organic tetracene nanoparticles in aqueous solution. Langmuir 19:3941–3946. doi:10.1021/la026851x

    Article  CAS  Google Scholar 

  • Liu H, Xu J, Li Y, Li Y (2010) Aggregate nanostructures of organic molecular materials. Acc Chem Res 43:1496–1508. doi:10.1021/ar100084y

    Article  CAS  Google Scholar 

  • Luo J, Xie Z, Lam JW et al (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 2001:1740–1741. doi:10.1039/b105159h

    Article  Google Scholar 

  • Macchioni A, Ciancaleoni G, Zuccaccia C, Zuccaccia D (2008) Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem Soc Rev 37:479–489. doi:10.1039/b615067p

    Article  CAS  Google Scholar 

  • Oelkrug D, Tompert A, Egelhaaf H et al (1996) Towards highly luminescent phenylene vinylene films. Synth Met 83:231–237. doi:10.1016/S0379-6779(96)04484-0

    Article  CAS  Google Scholar 

  • Oelkrug D, Tompert A, Gierschner J et al (1998) Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J Phys Chem B 102:1902–1907. doi:10.1021/jp973225d

    Article  CAS  Google Scholar 

  • Ong BS, Wu Y, Liu P, Gardner S (2005) Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors. Adv Mater 17:1141–1144. doi:10.1002/adma.200401660

    Article  CAS  Google Scholar 

  • Palayangoda SS, Cai X, Adhikari RM, Neckers DC (2008) Carbazole-based donor–acceptor compounds: highly fluorescent organic nanoparticles. Org Lett 10:281–284. doi:10.1021/ol702666g

    Article  CAS  Google Scholar 

  • Piok T, Gamerith S, Gadermaier C et al (2003) Organic light-emitting devices fabricated from semiconducting nanospheres. Adv Mater 15:800–804. doi:10.1002/adma.200304253

    Article  CAS  Google Scholar 

  • Ren Y, Dong Y, Lam JWY et al (2005) Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique. Chem Phys Lett 402:468–473. doi:10.1016/j.cplett.2004.12.103

    Article  CAS  Google Scholar 

  • Toal SJ, Jones KA, Magde D, Trogler WC (2005) Luminescent silole nanoparticles as chemoselective sensors for Cr(VI). J Am Chem Soc 127:11661–11665. doi:10.1021/ja052582w

    Article  CAS  Google Scholar 

  • Tong H, Hong Y, Dong Y et al (2006) Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem Commun 35:3705–37077. doi:10.1039/b608425g

    Article  Google Scholar 

  • Tong H, Dong Y, Hong Y et al (2007) Aggregation-induced emission: effects of molecular structure, solid-state conformation, and morphological packing arrangement on light-emitting behaviors of diphenyldibenzofulvene derivatives. J Phys Chem C 111:2287–2294. doi:10.1021/jp0630828

    Article  CAS  Google Scholar 

  • Vijayakumar C, Sugiyasu K, Takeuchi M (2011) Oligofluorene-based electrophoretic nanoparticles in aqueous medium as a donor scaffold for fluorescence resonance energy transfer and white-light emission. Chem Sci 2:291–294. doi:10.1039/C0SC00343C

    Article  CAS  Google Scholar 

  • Wang L, Dong L, Bian G-R et al (2005a) Using organic nanoparticle fluorescence to determine nitrite in water. Anal Bioanal Chem 382:1300–1303. doi:10.1007/s00216-005-3250-0

    Article  CAS  Google Scholar 

  • Wang T-T, Chung S-M, Wu F-I et al (2005b) Relaxation dynamics of 2,7- and 3,6-distyrylcarbazoles in solutions and in solid films: mechanism for efficient nonradiative deactivation in the 3,6-linked carbazole. J Phys Chem B 109:23827–23835. doi:10.1021/jp053940k

    Article  CAS  Google Scholar 

  • Xiao D, Xi L, Yang W et al (2003) Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J Am Chem Soc 125:6740–6745. doi:10.1021/ja028674s

    Article  CAS  Google Scholar 

  • Zheng C, Xu X, He F et al (2010) Preparation of high-quality organic semiconductor nanoparticle films by solvent-evaporation-induced self-assembly. Langmuir 26:16730–16736. doi:10.1021/la103449q

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by a grant (No. MIP-073/2011) from the Research Council of Lithuania. Dr. A. Gruodis is acknowledged for performing DFT calculations. Dr. A. Kadys is acknowledged for help in FE-SEM measurements. Dr. R. Juškėnas is thanked for performing SAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolis Kazlauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazlauskas, K., Miasojedovas, A., Dobrovolskas, D. et al. Self-assembled nanoparticles of p-phenylenediacetonitrile derivatives with fluorescence turn-on. J Nanopart Res 14, 877 (2012). https://doi.org/10.1007/s11051-012-0877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0877-6

Keywords

Navigation