Fabrication of solid-solution gold–platinum nanoparticles with controllable compositions by high-intensity laser irradiation of solution

  • Takahiro Nakamura
  • Yuliati Herbani
  • Shunichi Sato
Research Paper

Abstract

In the present study, solid-solution gold–platinum (Au–Pt) nanoparticles with controllable compositions were fabricated by high-intensity femtosecond laser irradiation of an aqueous solution of gold and platinum ions without any chemicals and complicated processes. Transmittance electron microscopy revealed that the single nanometer-sized particles were fabricated by femtosecond laser irradiation of mixed aqueous solutions of gold and platinum ions. The crystalline structure of nanoparticles was characterized by electron and X-ray diffractions. Contrary to the bulk Au–Pt binary systems, which commonly contain a pair of diffraction peaks between pure gold and platinum peaks because of its large miscibility gap in phase diagram, or mixture of Au and Pt, the diffraction peaks of Au–Pt nanoparticles fabricated in the experiment showed a characteristic of the fcc-type lattice. Moreover, the diffraction patterns shifted monotonically from the peak position of pure gold to that of pure platinum as the fractions of platinum ions in the solution were increased. These observations strongly imply that the Au–Pt nanoparticles were solid solution with intended compositions. This technique is not only simple and environmentally friendly, but also applicable to other binary and ternary systems.

Keywords

Au–Pt alloy nanoparticles Femtosecond laser Aqueous solution Photo-induced decomposition Catalyst Synthesis 

References

  1. Bond GC (2007) The electronic structure of platinum–gold alloy particles. Platinum Met Rev 51:63–68. doi:10.1595/147106707X187353 CrossRefGoogle Scholar
  2. Burke LD, Collins JA, Horgan MA, Hurley LM, O’Mullane AP (2000) The importance of the active states of surface atoms with regard to the electrocatalytic behaviour of metal electrodes in aqueous media. Electrochim Acta 45:4127–4134. doi:10.1016/S0013-4686(00)00532-6 CrossRefGoogle Scholar
  3. Chen HM, Peng HC, Liu RS, Hu SF, Sheu HS (2006) Morphology and surface plasma changes of Au–Pt bimetallic nanoparticles. J Nanosci Nanotechnol 6:1411–1415. doi:10.1166/jnn.2006.199 CrossRefGoogle Scholar
  4. Chin SL, Lagacé S (1996) Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization. Appl Opt 35:907–911. doi:10.1364/AO.35.000907 CrossRefGoogle Scholar
  5. Fernández PH, Rojas S, Ocón P, Gómez de la Fuente JL, Fabián JS, Sanza J, Peña MA, García FJG, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt–Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2913–2923. doi:10.1021/jp066812k CrossRefGoogle Scholar
  6. Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10:444–450. doi:10.1021/cm970613j CrossRefGoogle Scholar
  7. Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12:909–912. doi:10.1021/la950435d CrossRefGoogle Scholar
  8. Kempa T, Farrer RA, Giersig M, Fourkas JT (2006) Photochemical synthesis and multiphoton luminescence of monodisperse silver nanocrystals. Plasmonics 1:45–51. doi:10.1007/s11468-006-9008-5 CrossRefGoogle Scholar
  9. Lee JK, Lee J, Hanc J, Limc TH, Sungd YE, Tak Y (2008) Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell. Electrochim Acta 53:3474–3478. doi:10.1016/j.electacta.2007.12.031 CrossRefGoogle Scholar
  10. Liu RX, Smotkin ES (2002) Array membrane electrode assemblies for high throughput screening of direct methanol fuel cell anode catalysts. J Electroanal Chem 535:49–55. doi:10.1016/S0022-0728(02)01144-0 CrossRefGoogle Scholar
  11. Lou Y, Maye MM, Han L, Luo J, Zhong CJ (2001) Gold–platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation. Chem Commun 5:473–474. doi:10.1039/b008669j CrossRefGoogle Scholar
  12. Luo J, Maye MM, Petkov V, Kariuki NN, Wang L, Njoki P, Mott D, Lin Y, Zhong CJ (2005) Phase properties of carbon-supported gold–platinum nanoparticles with different bimetallic compositions. Chem Mater 17:3086–3091. doi:10.1021/cm050052t CrossRefGoogle Scholar
  13. Luo J, Njoki PN, Lin Y, Mott D, Wang L, Zhong CJ (2006) Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation Reaction. Langmuir 22:2892–2898. doi:10.1021/la0529557 CrossRefGoogle Scholar
  14. Morita M, Iwanaga Y, Matsuda Y (1991) Anodic oxidation of methanol at a gold-modified platinum electrocatalyst prepared by RF sputtering on a glassy carbon support. Electrochim Acta 36:947–951. doi:10.1016/0013-4686(91)85299-M CrossRefGoogle Scholar
  15. Mott D, Luo J, Njoki PN, Lin Y, Wang L, Zhong CJ (2007) Synergistic activity of gold–platinum alloy nanoparticle catalysts. Catal Today 122:378–385. doi:10.1016/j.cattod.2007.01.007 CrossRefGoogle Scholar
  16. Nakamura T, Mochidzuki Y, Sato S (2008) Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution. J Mater Res 23:968–974. doi:10.1557/JMR.2008.0115 CrossRefGoogle Scholar
  17. Nakamura T, Takasaki K, Ito A, Sato S (2009) Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution. Appl Surf Sci 255:9630–9633. doi:10.1016/j.apsusc.2009.04.092 CrossRefGoogle Scholar
  18. Nakamura T, Magara H, Herbani Y, Sato S (2011) Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl Phys A 104:1021–1024. doi:10.1007/s00339-011-6499-5 CrossRefGoogle Scholar
  19. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280:1735–1737. doi:10.1126/science.280.5370.1735 CrossRefGoogle Scholar
  20. Schrinner M, Proch S, Mei Y, Kempe R, Miyajima N, Ballauff M (2008) Stable bimetallic gold–platinum nanoparticles immobilized on spherical polyelectrolyte brushes: synthesis, characterization, and application for the oxidation of alcohols. Adv Mater 20:1928–1933. doi:10.1002/adma.200702421 CrossRefGoogle Scholar
  21. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt–bimetallic alloy surfaces. Nat Mater 6:241–247. doi:10.1038/nmat1840 CrossRefGoogle Scholar
  22. Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B 108:16864–16869. doi:10.1021/jp047134+ CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Takahiro Nakamura
    • 1
  • Yuliati Herbani
    • 1
  • Shunichi Sato
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations