Skip to main content
Log in

Fabrication of solid-solution gold–platinum nanoparticles with controllable compositions by high-intensity laser irradiation of solution

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the present study, solid-solution gold–platinum (Au–Pt) nanoparticles with controllable compositions were fabricated by high-intensity femtosecond laser irradiation of an aqueous solution of gold and platinum ions without any chemicals and complicated processes. Transmittance electron microscopy revealed that the single nanometer-sized particles were fabricated by femtosecond laser irradiation of mixed aqueous solutions of gold and platinum ions. The crystalline structure of nanoparticles was characterized by electron and X-ray diffractions. Contrary to the bulk Au–Pt binary systems, which commonly contain a pair of diffraction peaks between pure gold and platinum peaks because of its large miscibility gap in phase diagram, or mixture of Au and Pt, the diffraction peaks of Au–Pt nanoparticles fabricated in the experiment showed a characteristic of the fcc-type lattice. Moreover, the diffraction patterns shifted monotonically from the peak position of pure gold to that of pure platinum as the fractions of platinum ions in the solution were increased. These observations strongly imply that the Au–Pt nanoparticles were solid solution with intended compositions. This technique is not only simple and environmentally friendly, but also applicable to other binary and ternary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bond GC (2007) The electronic structure of platinum–gold alloy particles. Platinum Met Rev 51:63–68. doi:10.1595/147106707X187353

    Article  CAS  Google Scholar 

  • Burke LD, Collins JA, Horgan MA, Hurley LM, O’Mullane AP (2000) The importance of the active states of surface atoms with regard to the electrocatalytic behaviour of metal electrodes in aqueous media. Electrochim Acta 45:4127–4134. doi:10.1016/S0013-4686(00)00532-6

    Article  CAS  Google Scholar 

  • Chen HM, Peng HC, Liu RS, Hu SF, Sheu HS (2006) Morphology and surface plasma changes of Au–Pt bimetallic nanoparticles. J Nanosci Nanotechnol 6:1411–1415. doi:10.1166/jnn.2006.199

    Article  CAS  Google Scholar 

  • Chin SL, Lagacé S (1996) Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization. Appl Opt 35:907–911. doi:10.1364/AO.35.000907

    Article  CAS  Google Scholar 

  • Fernández PH, Rojas S, Ocón P, Gómez de la Fuente JL, Fabián JS, Sanza J, Peña MA, García FJG, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt–Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2913–2923. doi:10.1021/jp066812k

    Article  Google Scholar 

  • Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10:444–450. doi:10.1021/cm970613j

    Article  CAS  Google Scholar 

  • Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12:909–912. doi:10.1021/la950435d

    Article  CAS  Google Scholar 

  • Kempa T, Farrer RA, Giersig M, Fourkas JT (2006) Photochemical synthesis and multiphoton luminescence of monodisperse silver nanocrystals. Plasmonics 1:45–51. doi:10.1007/s11468-006-9008-5

    Article  CAS  Google Scholar 

  • Lee JK, Lee J, Hanc J, Limc TH, Sungd YE, Tak Y (2008) Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell. Electrochim Acta 53:3474–3478. doi:10.1016/j.electacta.2007.12.031

    Article  CAS  Google Scholar 

  • Liu RX, Smotkin ES (2002) Array membrane electrode assemblies for high throughput screening of direct methanol fuel cell anode catalysts. J Electroanal Chem 535:49–55. doi:10.1016/S0022-0728(02)01144-0

    Article  CAS  Google Scholar 

  • Lou Y, Maye MM, Han L, Luo J, Zhong CJ (2001) Gold–platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation. Chem Commun 5:473–474. doi:10.1039/b008669j

    Article  Google Scholar 

  • Luo J, Maye MM, Petkov V, Kariuki NN, Wang L, Njoki P, Mott D, Lin Y, Zhong CJ (2005) Phase properties of carbon-supported gold–platinum nanoparticles with different bimetallic compositions. Chem Mater 17:3086–3091. doi:10.1021/cm050052t

    Article  CAS  Google Scholar 

  • Luo J, Njoki PN, Lin Y, Mott D, Wang L, Zhong CJ (2006) Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation Reaction. Langmuir 22:2892–2898. doi:10.1021/la0529557

    Article  CAS  Google Scholar 

  • Morita M, Iwanaga Y, Matsuda Y (1991) Anodic oxidation of methanol at a gold-modified platinum electrocatalyst prepared by RF sputtering on a glassy carbon support. Electrochim Acta 36:947–951. doi:10.1016/0013-4686(91)85299-M

    Article  CAS  Google Scholar 

  • Mott D, Luo J, Njoki PN, Lin Y, Wang L, Zhong CJ (2007) Synergistic activity of gold–platinum alloy nanoparticle catalysts. Catal Today 122:378–385. doi:10.1016/j.cattod.2007.01.007

    Article  CAS  Google Scholar 

  • Nakamura T, Mochidzuki Y, Sato S (2008) Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution. J Mater Res 23:968–974. doi:10.1557/JMR.2008.0115

    Article  CAS  Google Scholar 

  • Nakamura T, Takasaki K, Ito A, Sato S (2009) Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution. Appl Surf Sci 255:9630–9633. doi:10.1016/j.apsusc.2009.04.092

    Article  CAS  Google Scholar 

  • Nakamura T, Magara H, Herbani Y, Sato S (2011) Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl Phys A 104:1021–1024. doi:10.1007/s00339-011-6499-5

    Article  CAS  Google Scholar 

  • Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280:1735–1737. doi:10.1126/science.280.5370.1735

    Article  CAS  Google Scholar 

  • Schrinner M, Proch S, Mei Y, Kempe R, Miyajima N, Ballauff M (2008) Stable bimetallic gold–platinum nanoparticles immobilized on spherical polyelectrolyte brushes: synthesis, characterization, and application for the oxidation of alcohols. Adv Mater 20:1928–1933. doi:10.1002/adma.200702421

    Article  CAS  Google Scholar 

  • Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt–bimetallic alloy surfaces. Nat Mater 6:241–247. doi:10.1038/nmat1840

    Article  CAS  Google Scholar 

  • Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B 108:16864–16869. doi:10.1021/jp047134+

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a Grant-in-Aid for Young Scientists (B) (No. 21760575) from the Japan Society for the Promotion of Science and the Adaptable and Seamless Technology Transfer Program through target-driven R&D from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Herbani, Y. & Sato, S. Fabrication of solid-solution gold–platinum nanoparticles with controllable compositions by high-intensity laser irradiation of solution. J Nanopart Res 14, 785 (2012). https://doi.org/10.1007/s11051-012-0785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0785-9

Keywords

Navigation