Skip to main content

Advertisement

Log in

ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O2 •−/HO2 , HO, and H2O2 generated upon 4-MeV X-ray irradiation of 6.4 μM silicon nanoparticle aqueous suspensions were on the order of 10 μM per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic 1O2 was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO2 and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields of ROS generated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation-enhanced ROS generation. The obtained results indicate that silicon nanoparticles of <5 nm size have the potential to be used as radiosensitizers for improving the outcomes of cancer radiotherapy. Their capability of producing 1O2 upon X-ray irradiation opens novel approaches in the design of therapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babich H, Borenfreund E (1990) Applications of the neutral red cytotoxicity assay to in vitro toxicology. ATLA 18:129–144

    Google Scholar 

  • Bertolini G, Coche A (1968) Semiconductor detectors. North Holland Publishing Co., New York

    Google Scholar 

  • Bosio GN, David Gara PM, Garcia Einschlag FS, Gonzalez MC, del Panno MT et al (2008) Photodegradation of soil organic matter and its effect on gram-negative bacterial growth. Photochem Photobiol 84:1126–1132

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Carter JD, Cheng NN, Qu Y, Suarez GD, Guo T (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B 111:11622–11625

    Article  CAS  Google Scholar 

  • Chen M, Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305:51–62

    Article  CAS  Google Scholar 

  • Cooney RR, Sewall SL, Dias EA, Sagar DM, Anderson KEH et al (2007) Unified picture of electron and hole relaxation pathways in semiconductor quantum dots. Phys Rev B 75:245311

    Article  Google Scholar 

  • Dennis EJ, Dolmaris GC, Fucamara D, Jain RK (2003) TIMELINE: photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  Google Scholar 

  • Erogbogbo F, Tien CA, Chang CW, Yong KT, Law WC et al (2011) Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem 22:1081–1088

    Article  CAS  Google Scholar 

  • Hackley VA, Clogston JD (2007) Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. NIST-NCL joint assay protocol PCC-1, Version 1.0. http://ncl.cancer.gov/NCL_Method_NIST-NCL_PCC-1.pdf. Accessed 13 July 2011

  • Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hubbell JH (1999) Review of photon interaction cross section data in the medical and biological context. Phys Med Biol 44:R1–R22

    Article  CAS  Google Scholar 

  • Hubbell JH, Seltzer SM (2010) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. Ionizing Radiation Division, Physics Laboratory, NIST. http://www.nist.gov/pml/data/xraycoef/index.cfm. Accessed 13 July 2011

  • Isakovic A, Markovic Z, Nikolic N, Todorovic-Markovic B, Vranjes-Djuric S et al (2006) Inactivation of nanocrystalline C60 cytotoxicity by [gamma]-irradiation. Biomaterials 27:5049–5058

    Article  CAS  Google Scholar 

  • Juzenas P, Chen W, Sun Y-P, Coelho MAN, Generalov R et al (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60:1600–1614

    Article  CAS  Google Scholar 

  • Kang Z, Liu Y, Lee S-T (2011) Small-sized silicon nanoparticles: new nanolights and nanocatalysts. Nanoscale 3:777–791

    Article  CAS  Google Scholar 

  • Knoll GF (1989) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  • Kohn T, Nelson KL (2006) Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environ Sci Technol 41:192–197

    Article  Google Scholar 

  • Kovalev D, Fujii M (2005) Silicon nanocrystals: photosensitizers for oxygen molecules. Adv Mater 17:2531–2544

    Article  CAS  Google Scholar 

  • Kravets VG, Meier C, Konjhodzic D, Lorke A, Wiggers H (2005) Infrared properties of silicon nanoparticles. J Appl Phys 97:1–5

    Article  Google Scholar 

  • Lide DR (2009) Handbook of chemistry and physics. CRC Press. Inc., Boca Raton

    Google Scholar 

  • Llansola Portolés MJ, Rodriguez Nieto F, Soria DB, Amalvy JI, Peruzzo PJ et al (2009) Photophysical properties of blue-emitting silicon nanoparticles. J Phys Chem C 113:13694–13702

    Article  Google Scholar 

  • Llansola Portolés MJ, David Gara PM, Kotler ML, Bertolotti S, San Roman E et al (2010) Silicon nanoparticle photophysics and singlet oxygen generation. Langmuir 26:10953–10960

    Article  Google Scholar 

  • Mitrasinovic PM, Mihajlovic ML (2008) Recent advances in radiation therapy of cancer cells: a step towards an experimental and systems biology framework. Curr Radiopharm 1:22–29

    Article  CAS  Google Scholar 

  • Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455

    Article  CAS  Google Scholar 

  • Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater 12:1591–1596

    Article  CAS  Google Scholar 

  • Ozcan I, Bouchemal K, Segura-Sanchez F, Abac O, Ozer O, Guneri T, Ponchel G (2009) Effects of sterilization techniques on the PEGylated poly (fÁ-benzyl-L-glutamate) (PBLG) nanoparticles. Acta Pharmaceut Sci 51:211–218

    CAS  Google Scholar 

  • Park Y-S, Liz M, Kasuya LM, Kobayashi Y et al (2006) X-ray absorption of gold nanoparticles with thin silica shell. J Nanosci Nanotechnol 6:3503–3506

    Article  CAS  Google Scholar 

  • Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN et al (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  CAS  Google Scholar 

  • Propst EK, Kohl PA (1994) The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile. J Electrochem Soc 141:1006–1013

    Article  CAS  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  Google Scholar 

  • Ross AB, Mallard WG, Helman WP (1998) NDRL-NIST solution kinetics database: Ver. 4.0. http://kinetics.nist.gov/solution/. Accessed 13 July 2011

  • Ryckman JD, Reed RA, Weller RA, Fleetwood DM, Weiss SM (2010) Enhanced room temperature oxidation in silicon and porous silicon under 10 keV X-ray irradiation. J Appl Phys 108:113528–113534

    Article  Google Scholar 

  • Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin

    Google Scholar 

  • Seino S, Yamamoto TA, Hashimoto K, Okuda S, Chitose N et al (2003) Gamma-ray irradiation effect on aqueous phenol solutions dispersing TiO2 or Al2O3 nanoparticles. Rev Adv Mater Sci 4:70–74

    CAS  Google Scholar 

  • Soffietti R, Leoncini B, Rudà R (2007) New developments in the treatment of malignant gliomas. Expert Rev Neurother 7:1313–1326

    Article  CAS  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  CAS  Google Scholar 

  • Takahashi J, Misawa M (2007) Analysis of potential radiosensitizing materials for X-ray-induced photodynamic therapy. NanoBiotechnology 3:116–126

    Article  CAS  Google Scholar 

  • Wang PW, Bater S, Zhang LP, Ascherl M, Craig JH (1995) XPS investigation of electron beam effects on a trimethylsilane dosed Si(100) surface. Appl Surf Sci 90:413–417

    Article  CAS  Google Scholar 

  • Wang L, Yang W, Read P, Larner J, Sheng K (2010) Tumor cell apoptosis induced by nanoparticle conjugate in combination with radiation therapy. Nanotechnology 21:475103–475110

    Article  Google Scholar 

  • Yang CS, Oh KS, Ryu JY, Kim DC, Shou-Yong J et al (2001) A study on the formation and characteristics of the Si–O–C–H composite thin films with low dielectric constant for advanced semiconductor devices. Thin Solid Films 390:113–118

    Article  CAS  Google Scholar 

  • Yang W, Read PW, Mi JM, Baisden JM, Reardon KA et al (2008) Semiconductor nanoparticles as energy mediators for photosensitizer-enhanced radiotherapy. Int J Radiat Oncol 72:633–635

    Article  CAS  Google Scholar 

  • Yoffe AD (2001) Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys 50:1–208

    Article  CAS  Google Scholar 

  • Zhang XD, Guo ML, Wu HY, Sun YM, Ding YQ et al (2009) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomed 4:165–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the grant PIP 112-200801-00356 from CONICET, Argentina. The authors thank Lic. M. Martinez from the Physical Department at CIO La Plata for his help with the irradiation of the samples, Dr. Aldo Rubbert from INIFTA for the XPS spectrum, B. Soria from CEQUINOR, UNLP for the FTIR spectra, and A. Wolosiuk from CNEA, Bs.As. for the DLS measurements. P.M.D.G. thanks Fundación Avanzar for a postgraduate fellowship. N.I.G. and M.J.L.P. thank CONICET for a studentship. M.C.G. and M.L.K. are research members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mónica C. Gonzalez or Mónica L. Kotler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

David Gara, P.M., Garabano, N.I., Llansola Portoles, M.J. et al. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. J Nanopart Res 14, 741 (2012). https://doi.org/10.1007/s11051-012-0741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0741-8

Keywords

Navigation