Skip to main content
Log in

Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In2O3 surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV–Vis-absorption spectroscopy are used to characterize the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acacia N, Barreca F, Barletta E, Spadaro D, Curro G, Neri F (2010) Laser ablation synthesis of indium oxide nanoparticles in water. Appl Surf Sci 256:6918–6922

    Article  CAS  Google Scholar 

  • Askarinejad A, Iranpour M, Bahramifar N, Morsali A (2010) Synthesis and characterization of In(OH)3 and In2O3 nanoparticles by sol–gel and solvothermal methods. J Exp Nanosci 5:294–301

    Article  CAS  Google Scholar 

  • Caruntu D, Yao K, Zhang Z, Austin T, Zhou W, O’Connor CJ (2010) One-step synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals in long chain alcohol solutions. J Phys Chem C 114:4875–4886

    Article  CAS  Google Scholar 

  • Chen SY, Wu MC, Lee CS, Lin MC (2008) Synthesis of In(OH)3 and In2O3 nanomaterials incorporating Au. J Mater Sci 44:794–798

    Article  Google Scholar 

  • El-Maghraby EM, Ahsanulhaq Q, Yamazaki T (2010) Synthesis of In2O3 nanostructures: from pyramidal monuments, nanotowers to nanopencils. J Nanosci Nanotechnol 10:4950–4954

    Article  CAS  Google Scholar 

  • Farvid SS, Dave N, Wang T, Radovanovic PV (2009) Dopant-induced manipulation of the growth and structural metastability of colloidal indium oxide nanocrystals. J Phys Chem C 113:15928–15933

    Article  CAS  Google Scholar 

  • Hu WB, Tian DT, Mi YZ, Nie GH, Zhao YM, Liu ZL, Yao KL (2009) Synthesis and characterization of In2O3 nanocube via a solvothermal-calcination route. Mater Chem Phys 118:277–280

    Article  CAS  Google Scholar 

  • Jean ST, Her YC (2010) Growth mechanism and photoluminescence properties of In2O3 nanotowers. Cryst Growth Des 10:2104–2110

    Article  CAS  Google Scholar 

  • Koo B, Patel RN, Korgel BA (2009) Synthesis of CuInSe2 nanocrystals with trigonal pyramidal shape. J Am Chem Soc 131:3134–3135

    Article  CAS  Google Scholar 

  • Liu Q, Lu W, Ma A, Tang J, Lin J, Fang J (2005) Study of quasi-monodisperse In2O3 nanocrystals: synthesis and optical determination. J Am Chem Soc 127:5276–5277

    Article  CAS  Google Scholar 

  • Lu X, Yu Q, Wang K, Shi L, Liu X, Qiu A, Wang L, Cui D (2010) Synthesis, characterization and gas sensing properties of flowerlike In2O3 composed of microrods. Cryst Res Technol 45:557–561

    Article  CAS  Google Scholar 

  • Lutterotti L, Chateigner D, Ferrari S, Ricote J (2004) Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 450:34–41

    Article  CAS  Google Scholar 

  • Narayanaswamy A, Xu HF, Pradhan N, Kim M, Peng XG (2006) Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alkoholysis vs pyrolysis. J Am Chem Soc 128:10310–10319

    Article  CAS  Google Scholar 

  • Popa NC (1992) Texture in Rietveld refinement. J Appl Crystallogr 25:611–616

    Article  Google Scholar 

  • Popa NC (1998) The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J Appl Crystallogr 31:176–180

    Article  CAS  Google Scholar 

  • Qurashi A, El-Maghraby EM, Yamazaki T, Shen Y, Kikuta T (2009) A generic approach for controlled synthesis of In2O3 nanostructures for gas sensing applications. J Alloys Compd 481:L35–L39

    Article  CAS  Google Scholar 

  • Seo WS, Jo HH, Lee K, Park JT (2003) Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv Mater 15:795–797

    Article  CAS  Google Scholar 

  • Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  • Song H, Kim F, Connor S, Somorjai GA, Yang P (2005) Pt nanocrystals: shape control and Langmuir–Blodgett monolayer formation. J Phys Chem B 109:188–193

    Article  CAS  Google Scholar 

  • Takeda Y, Kato N, Higuchi K, Takeichi A, Motohiro T, Fukumoto S, Sano T, Toyoda T (2009) Monolithically series-interconnected transparent modules of dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:808–811

    Article  CAS  Google Scholar 

  • Tseng TT, Tseng WJ (2009) Effect of polyvinylpyrrolidone on morphology and structure of In2O3 nanorods by hydrothermal synthesis. Ceram Int 35:2837–2844

    Article  CAS  Google Scholar 

  • Wang C, Chen D, Jiao X (2009) Flower-like In2O3 nanostructures derived from novel precursor: synthesis, characterization, and formation mechanism. J Phys Chem C 113:7714–7718

    Article  CAS  Google Scholar 

  • Yang HX, Yang ZJ, Liang H, Liu L, Guo JX, Yang YZ (2010a) Solvothermal synthesis of In(OH)3 nanorods and their conversion to In2O3. Mater Lett 64:1418–1420

    Article  CAS  Google Scholar 

  • Yang Y, Jin Y, He H, Wang Q, Tu Y, Lu H, Ye Z (2010b) Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc 132:13381–13394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Erhard Rhiel and Heike Oetting for assistance in obtaining TEM images, Karsten Thiel for assistance in obtaining HRTEM (and EDX at HRTEM) data, Andrea Tschirne and Dieter Neemeyer for assistance in obtaining NMR data, Kambulakwao Chakanga from EWE-Forschungszentrum für Energietechnologie e. V. for assistance in obtaining absorption spectra, Renate Kort for assistance in obtaining EDX data. E.S. gratefully acknowledges personal funding within the “EWE-Nachwuchsgruppe” by the EWE AG, Oldenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Kolny-Olesiak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 868 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selishcheva, E., Parisi, J. & Kolny-Olesiak, J. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles. J Nanopart Res 14, 711 (2012). https://doi.org/10.1007/s11051-011-0711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0711-6

Keywords

Navigation