Skip to main content
Log in

ZnO Nanoparticles, Nanorods, Hexagonal Plates and Nanosheets Produced by Polyol Route and the Effect of Surface Passivation by Acetate Molecules on Optical Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We carried out synthesis of shape-controlled ZnO nanoparticles following a polyol route using either ethylene glycol (EG) or polyethylene glycol (PEG) as solvent, which exhibited wurtzite structures as identified by XRD patterns. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses of the synthesized structures showed that the size and the shape are strongly dependent on the reaction medium, resulting in nanospheres, rods, hexagonal plates or sheets, which were characterized by different spectroscopy techniques such as: Raman scattering, x-ray photoelectron spectroscopy (XPS), UV–Vis and photoluminescence (PL). The Raman analysis showed that the resulting surface is passivated with acetate molecules and also monitored the presence of superficial defects, whose spectroscopic patterns (Raman spectroscopy) indicated that the passivation with acetate molecules reduces the number of defects, such as oxygen vacancies. This result was confirmed by XPS analyses that identified chemisorbed oxygen species onto the oxide surface and an oxygen-deficient component in the sample prepared as reference, without a passivation with EG or PEG. Photoluminescence results showed that the passivation, size and shape of the particles influenced the optical features, mainly at the emission at the green region of spectrum that has been related with surface defects. This green emission is favoured at the ZnO sample prepared without passivation and with large amount of defects. Current–voltage characteristic (JV) of an inverted organic solar cell showed the potential application of these ZnO nanostructures as electron transport material in organic photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, Appl. Phys. A Mater. Sci. Process. 96, 197 (2009).

    Article  Google Scholar 

  2. J. Yang, K. Liu, Z. Cheng, P. Jing, Q. Ai, X. Chen, B. Li, Z. Zhang, L. Zhang, H. Zhao, and D. Shen, ACS Appl. Mater. Interfaces 10, 34744 (2018).

    Article  Google Scholar 

  3. K. Wang, L. Bießmann, M. Schwartzkopf, S.V. Roth, and P. Müller-Buschbaum, ACS Appl. Mater. Interfaces 10, 20569 (2018).

    Article  Google Scholar 

  4. S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi, and H. Park, Nano Lett. 18, 1337 (2018).

    Article  Google Scholar 

  5. H. Li, M. Xia, G. Dai, H. Yu, Q. Zhang, A. Pan, T. Wang, Y. Wang, and B. Zou, J. Phys. Chem. C 112, 17546 (2008).

    Article  Google Scholar 

  6. L. Zhou, H.Y. Xiang, Y.F. Zhu, Q.D. Ou, Q.K. Wang, J. Du, R. Hu, X.B. Huang, and J.X. Tang, ACS Appl. Mater. Interfaces 11, 9251 (2019).

    Article  Google Scholar 

  7. M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, and L.A. Patil, Sens. Actuators B Chem. 115, 128 (2006).

    Article  Google Scholar 

  8. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).

    Article  Google Scholar 

  9. F. Giovannelli, C. Chen, P. Díaz-Chao, E. Guilmeau, and F. Delorme, J. Eur. Ceram. Soc. 38, 5015 (2018).

    Article  Google Scholar 

  10. G. Gonçalves, A. Pimentel, E. Fortunato, R. Martins, E.L. Queiroz, R.F. Bianchi, and R.M. Faria, J. Non Cryst. Solids 352, 1444 (2006).

    Article  Google Scholar 

  11. Z.L. Wang, ACS Nano 2, 1987 (2008).

    Article  Google Scholar 

  12. P. Grey, D. Gaspar, I. Cunha, R. Barras, J.T. Carvalho, J.R. Ribas, E. Fortunato, R. Martins, and L. Pereira, Adv. Mater. Technol. 2, 1700009 (2017).

    Article  Google Scholar 

  13. P. Ruankham, S. Yoshikawa, and T. Sagawa, Phys. Chem. Chem. Phys. 15, 9516 (2013).

    Article  Google Scholar 

  14. Z. Wu, T. Song, Z. Xia, H. Wei, and B. Sun, Nanotechnology 24, 484012 (2013).

    Article  Google Scholar 

  15. R. Søndergaard, M. Helgesen, M. Jørgensen, and F.C. Krebs, Adv. Energy Mater. 1, 68 (2011).

    Article  Google Scholar 

  16. C.H. Luong, S. Kim, S. Surabhi, T.S. Vo, K.M. Lee, S.G. Yoon, J.H. Jeong, J.H. Choi, and J.R. Jeong, Appl. Surf. Sci. 351, 487 (2015).

    Article  Google Scholar 

  17. A. Kolodziejczak-Radzimska and T. Jesionowski, Materials (Basel) 7, 2833 (2014).

    Article  Google Scholar 

  18. X. Wen, W. Wu, Y. Ding, and Z.L. Wang, J. Mater. Chem. 22, 9469 (2012).

    Article  Google Scholar 

  19. S. Nezhadesm-kohardafchahi, S. Farjami-shayesteh, Y. Badali, Ş. Alt, Y. Azizian-kalandaragh, A. Khodayari, and M. Behboudnia, Mater. Sci. Semicond. Process. 12, 142 (2018).

    Google Scholar 

  20. Y. Azizian-kalandaragh, A. Khodayari, and M. Behboudnia, Mater. Sci. Semicond. Process. 12, 142 (2009).

    Article  Google Scholar 

  21. H. Dong, Y.C. Chen, and C. Feldmann, Green Chem. 17, 4107 (2015).

    Article  Google Scholar 

  22. C. Feldmann, Solid State Sci. 7, 868 (2005).

    Article  Google Scholar 

  23. F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, Solid State Ionics 32–33, 198 (1989).

    Article  Google Scholar 

  24. M. Hosni, Y. Kusumawati, S. Farhat, N. Jouini, and T. Pauporté, J. Phys. Chem. C 118, 16791 (2014).

    Article  Google Scholar 

  25. Y. Inamdar, N. Beedri, K. Kodam, A. Shaikh, and H. Pathan, in Macromol. Symp. (2015), pp. 52–57.

  26. S. Kumar, D. Panigrahi, and A. Dhar, Org. Electron. Phys. Mater. Appl. 38, 1 (2016).

    Google Scholar 

  27. B.W. Chieng and Y.Y. Loo, Mater. Lett. 73, 78 (2012).

    Article  Google Scholar 

  28. D.J. Coutinho and R.M. Faria, Appl. Phys. Lett. 103, 223304 (2013).

    Article  Google Scholar 

  29. T. Hu, F. Li, K. Yuan, and Y. Chen, ACS Appl. Mater. Interfaces 5, 5763 (2013).

    Article  Google Scholar 

  30. S. Lee, S. Jeong, D. Kim, S. Hwang, M. Jeon, and J. Moon, Superlattices Microstruct. 43, 330 (2008).

    Article  Google Scholar 

  31. X. Liu, M. Afzaal, K. Ramasamy, P. O’Brien, and J. Akhtar, J. Am. Chem. Soc. 131, 15106 (2009).

    Article  Google Scholar 

  32. R. Boppella, K. Anjaneyulu, P. Basak, and S.V. Manorama, J. Phys. Chem. C 117, 4597 (2013).

    Article  Google Scholar 

  33. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, and M.J. Callahan, Phys. Rev. B 75, 165202 (2007).

    Article  Google Scholar 

  34. S. Ben Yahia, L. Znaidi, A. Kanaev, and J.P. Petitet, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 1234 (2008).

    Article  Google Scholar 

  35. R.D. Yang, S. Tripathy, Y. Li, and H.J. Sue, Chem. Phys. Lett. 411, 150 (2005).

    Article  Google Scholar 

  36. R.L. Frost and J.T. Kloprogge, J. Mol. Struct. 526, 131 (2000).

    Article  Google Scholar 

  37. G. Xiong, U. Pal, and J.G. Serrano, J. Appl. Phys. 101, 24317 (2007).

    Article  Google Scholar 

  38. Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, and A.J. Heeger, Adv. Mater. 23, 1679 (2011).

    Article  Google Scholar 

  39. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, Nanoscale 6, 10224 (2014).

    Article  Google Scholar 

  40. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, and R. Liu, Sci. Rep. 4, 4596 (2014).

    Article  Google Scholar 

  41. K. Kotsis and V. Staemmler, Phys. Chem. Chem. Phys. 8, 1490 (2006).

    Article  Google Scholar 

  42. J.H. Lin, R.A. Patil, R.S. Devan, Z.A. Liu, Y.P. Wang, C.H. Ho, Y. Liou, and Y.R. Ma, Sci. Rep. 4, 1 (2014).

    Google Scholar 

  43. S. Talam, S.R. Karumuri, and N. Gunnam, ISRN Nanotechnol. 2012, 1 (2012).

    Article  Google Scholar 

  44. A.K. Zak, M.E. Abrishami, W.H.A. Majid, R. Yousefi, and S.M. Hosseini, Ceram. Int. 37, 393 (2011).

    Article  Google Scholar 

  45. M.H. Farooq, I. Aslam, H.S. Anam, M. Tanveer, Z. Ali, U. Ghani, and R. Boddula, Mater. Sci. Energy Technol. 2, 181 (2019).

    Google Scholar 

  46. K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, and W.F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).

    Article  Google Scholar 

  47. A. Sharma, B.P. Singh, S. Dhar, A. Gondorf, and M. Spasova, Surf. Sci. 606, L13 (2012).

    Article  Google Scholar 

  48. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113 (2001).

    Article  Google Scholar 

  49. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. 20, 561 (2010).

    Article  Google Scholar 

  50. G. Williams and P.V. Kamat, Langmuir 25, 13869 (2009).

    Article  Google Scholar 

  51. A.M.S. Salem, S.M. El-Sheikh, F.A. Harraz, S. Ebrahim, M. Soliman, H.S. Hafez, I.A. Ibrahim, and M.S.A. Abdel-Mottaleb, Appl. Surf. Sci. 425, 156 (2017).

    Article  Google Scholar 

  52. B.Y. Finck and B.J. Schwartz, Appl. Phys. Lett. 103, 053306 (2013).

    Article  Google Scholar 

  53. B. Lechêne, J. Leroy, O. Tosoni, R. De Bettignies, and G. Perrier, J. Phys. Chem. C 118, 20132 (2014).

    Article  Google Scholar 

  54. A. Manor, E.A. Katz, T. Tromholt, and F.C. Krebs, Sol. Energy Mater. Sol. Cells 98, 491 (2012).

    Article  Google Scholar 

  55. D.C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J.L. MacManus-Driscoll, Nanoscale Res. Lett. 7, 1 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the LAMAQ and CMCM (UTFPR), ESPEC-CMLP (UEL) and the National Institute for Science and Technology on Organic Electronics (INEO). A.G.M. acknowledges the financial support from Serrapilheira Institute (Grant No. Serra-1709-17054)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula C. Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, E.F., Coelho, J.A., Spada, E.R. et al. ZnO Nanoparticles, Nanorods, Hexagonal Plates and Nanosheets Produced by Polyol Route and the Effect of Surface Passivation by Acetate Molecules on Optical Properties. J. Electron. Mater. 48, 6437–6445 (2019). https://doi.org/10.1007/s11664-019-07446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07446-6

Keywords

Navigation