Skip to main content
Log in

Facile patterning of luminescent GdVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) thin films by microcontact printing process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ordered arrays of luminescent GdVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) films with dot patterns have been successfully fabricated via microcontact printing method. The soft-lithography process utilizes a PDMS elastomeric mold as the stamp combined with a Pechini-type sol–gel process to produce luminescent patterns on quartz plates, in which a GdVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) precursor solution was employed as ink. The ordered luminescent GdVO4:Ln patterns were revealed by optical microscopy and their microstructure, consisting of nanometer-scale particles, as demonstrated by scanning electronic microscopy observations. In addition, photoluminescence and cathodoluminescence were carried out to characterize the patterned GdVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) samples. Upon UV-light or electron-beam irradiation, the rare earth ions Eu3+, Dy3+, and Sm3+ in the crystalline GdVO4 host show their characteristic transitions dominated by 5D07F2, 4F9/26H13/2 ,and 4G5/26H7/2, respectively. These results make the combining soft lithography with a Pechini-type sol–gel route have potential applications as rare-earth luminescent pixels for next-generation field-emission display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Burrows PE, Shen Z, Bulovic V, McCarty DM, Forrest SR, Cronin JA, Thompson ME (1996) Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J Appl Phys 79:7991–8006

    Article  CAS  Google Scholar 

  • Cheng ZY, Gao BX, Pang ML, Han YC, Lin J (2003) Preparation and characterization of a novel layered perovskite-type organic/inorganic hybrid material containing silica networks. Chem Mater 15:4705–4708

    Article  CAS  Google Scholar 

  • Cheng ZY, Xing RB, Hou ZY, Huang SS, Lin J (2010) Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing. J Phys Chem C 114:9883–9888

    Article  CAS  Google Scholar 

  • Choe JY, Ravichandran D, Blomquist SM, Morton DC, Kirchner KW, Ervin MH, Lee U (2001) Alkoxy sol–gel derived Y3-xAl5O12:Tb-x thin films as efficient cathodoluminescent phosphors. Appl Phys Lett 78:3800–3802

    Article  CAS  Google Scholar 

  • Deininger WD, Garner CE (1988) Pattern definition and formation on curved surfaces. J Vac Sci Technol B 6:337–340

    Article  CAS  Google Scholar 

  • Feldman C (1960) Range of 1–10 kev electrons in solids. Phys Rev 117:455–459

    Article  CAS  Google Scholar 

  • Hao JH, Gao J (2004) Abnormal reduction of Eu ions and luminescence in CaB2O4:Eu thin films. Appl Phys Lett 85:3720–3722

    Article  CAS  Google Scholar 

  • Hao JH, Zeng XT, Wong HK (1996) Optical response of single-crystal (La, Ca)MnOδ thin films. J Appl Phys 79:1810–1812

    Article  CAS  Google Scholar 

  • Hirano S, Yogo T, Kikuta K, Sakamoto W, Koganei H (1996) Synthesis of Nd:YVO4 thin films by a sol–gel method. J Am Ceram Soc 79:3041–3044

    Article  CAS  Google Scholar 

  • Hirosaki N, Xie RJ, Inoue K, Sekiguchi T, Dierre B, Tamura K (2007) Blue-emitting AlN:Eu2+ nitride phosphor for field emission displays. Appl Phys Lett 91:061101

    Article  Google Scholar 

  • Jang JE, Gwak JH, Jin YW, Lee SJ, Park SH, Jung JE, Lee NS, Kim JM (2000) High resolution phosphor screening method for full-color field emission display applications. J Vac Sci Technol B 18:1106–1110

    Article  CAS  Google Scholar 

  • Jüstel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3085–3103

    Article  Google Scholar 

  • Kim E, Xia YN, Whitesides GM (1995) Polymer microstructures formed by molding in capillaries. Nature 376:581–584

    Article  CAS  Google Scholar 

  • Kim E, Xia YN, Zhao XM, Whitesides GM (1997) Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv Mater 9:651–654

    Article  CAS  Google Scholar 

  • Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl Phys Lett 63:2002–2004

    Article  CAS  Google Scholar 

  • Kumar A, Biebuyck HA, Whitesides GM (1994) Patterning self-assembled monolayers-applications in materials science. Langmuir 10:1498–1511

    Article  CAS  Google Scholar 

  • Lin J, Yu M, Lin CK, Liu XM (2007) Multiform oxide optical materials via the versatile Pechini-type sol–gel process: synthesis and characteristics. J Phys Chem C 111:5835–5845

    Article  CAS  Google Scholar 

  • Pan JB, Tonkay GL, Quintero A (1999) Screen printing process design of experiments for fine line printing of thick film ceramic substrates. J Electron Manuf 9:203–213

    Article  Google Scholar 

  • Pechini MP (1967) U.S. Patent 3,330,697

  • Ruiz SA, Chen CS (2007) Microcontact printing: a tool to pattern. Soft Matter 3:168–177

    Article  CAS  Google Scholar 

  • Wang R, Hu YX (2003) Patterning hydroxyapatite biocoating by electrophoretic deposition. J Biomed Mater Res A 67A:270–275

    Article  CAS  Google Scholar 

  • Wang WX, Cheng ZY, Yang PP, Hou ZY, Li CX, Li GG, Dai YL, Lin J (2010) Patterning of YVO4:Eu3+ luminescent films by soft lithography. Adv Funct Mater 21:456–463

    Article  Google Scholar 

  • Wyart FB, Martin P, Redon C (1993) Liquid–liquid dewetting. Langmuir 9:3682–3690

    Article  CAS  Google Scholar 

  • Xia YN, Whitesides GM (1997) Extending microcontact printing as a microlithographic technique. Langmuir 13:2059–2067

    Article  CAS  Google Scholar 

  • Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  CAS  Google Scholar 

  • Xia YN, Kim E, Whitesides GM (1996a) Micromolding of polymers in capillaries: applications in microfabrication. Chem Mater 8:1558–1567

    Article  CAS  Google Scholar 

  • Xia YN, Kim E, Zhao XM, Rogers JA, Prentiss M, Whitesides GM (1996b) Complex optical surfaces formed by replica molding against elastomeric masters. Science 273:347–349

    Article  CAS  Google Scholar 

  • Xu ZH, Kang XJ, Li CX, Hou ZY, Zhang CM, Yang DM, Li GG, Lin J (2010) Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties. Inorg Chem 49:6706–6715

    Article  CAS  Google Scholar 

  • Xue LJ, Han YC (2009) Autophobic dewetting of a poly(methyl methacrylate) thin film on a silicon wafer treated in good solvent vapor. Langmuir 25:5135–5140

    Article  CAS  Google Scholar 

  • Xue CY, Chin SY, Khan SA, Yang KL (2010a) UV-defined flat PDMS stamps suitable for microcontact printing. Langmuir 26:3739–3743

    Article  CAS  Google Scholar 

  • Xue LJ, Gao X, Zhao K, Liu JG, Yu XH, Han YC (2010b) The formation of different structures of poly(3-hexylthiophene) film on a patterned substrate by dip coating from aged solution. Nanotechnology 21:145303

    Article  Google Scholar 

  • Young RJH, Evans PSA, Hay GI, Southee DJ, Harrison DJ (2008) Electroluminescent light sources via soft lithography. Circuit World 34:9–12

    Article  CAS  Google Scholar 

  • Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography. Chem Mater 14:2224–2231

    Article  CAS  Google Scholar 

  • Zhao XM, Stoddart A, Smith SP, Kim E, Xia YN, Prentiss M, Whitesides GM (1996) Fabrication of single-mode polymeric waveguides using micromolding in capillaries. Adv Mater 8:420–424

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is financially supported by the National Basic Research Program of China (Grant No. 2010CB327704), National High Technology Program of China (2011AA03A407) and the National Natural Science Foundation of China (Grant Nos. NSFC 60977013, 20921002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziyong Cheng or Jun Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Yang, P., Cheng, Z. et al. Facile patterning of luminescent GdVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) thin films by microcontact printing process. J Nanopart Res 14, 707 (2012). https://doi.org/10.1007/s11051-011-0707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0707-2

Keywords

Navigation