Skip to main content
Log in

Maillard reaction-derived laser lithography for printing functional inorganics

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

Photopolymerization-based additive printing of functional inorganics has drawn great attention in recent years and one important challenge is the photoresin loading with diverse inorganics. Here, we introduce a Maillard reaction-derived laser lithography strategy for an unprecedented direct printing of diverse inorganic compounds. The sugar-assisted laser lithography (SLL) is powerful to carry choice metal ions and versatile for the generation of patterned inorganic materials comprising metal oxides, metal sulfides, and metal nitrides, characterized by ferroelectric, magnetic, semiconductivity, superconductivity, or other properties. The material architecture is flexibly manipulated by the laser intensity, power, printing speed, precursor solution, and computer-aided design to satisfy the practical requirements. This work demonstrates a new possibility for the further development of laser lithography in the directly printing of feature-rich inorganic materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Li J, Pumera M. Chem Soc Rev, 2021, 50: 2794–2838

    Article  CAS  PubMed  Google Scholar 

  2. Pan JA, Rong Z, Wang Y, Cho H, Coropceanu I, Wu H, Talapin DV. J Am Chem Soc, 2021, 143: 2372–2383

    Article  CAS  PubMed  Google Scholar 

  3. Cui H, Hensleigh R, Yao D, Maurya D, Kumar P, Kang MG, Priya S, Zheng XR. Nat Mater, 2019, 18: 234–241

    Article  CAS  PubMed  Google Scholar 

  4. Capel AJ, Rimington RP, Lewis MP, Christie SDR. Nat Rev Chem, 2018, 2: 422–436

    Article  Google Scholar 

  5. Blasco E, Müller J, Müller P, Trouillet V, Schön M, Scherer T, Barner-Kowollik C, Wegener M. Adv Mater, 2016, 28: 3592–3595

    Article  CAS  PubMed  Google Scholar 

  6. Shukla S, Vidal X, Furlani EP, Swihart MT, Kim KT, Yoon YK, Urbas A, Prasad PN. ACS Nano, 2011, 5: 1947–1957

    Article  CAS  PubMed  Google Scholar 

  7. Vyatskikh A, Delalande S, Kudo A, Zhang X, Portela CM, Greer JR. Nat Commun, 2018, 9: 593

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vyatskikh A, Ng RC, Edwards B, Briggs RM, Greer JR. Nano Lett, 2020, 20: 3513–3520

    Article  CAS  PubMed  Google Scholar 

  9. Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA. Science, 2016, 351: 58–62

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Schmidt F, Hanaor D, Kamm PH, Li S, Gurlo A. Addit Manuf, 2019, 27: 80–90

    CAS  Google Scholar 

  11. Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang TM, Richter C, Helmer D, Rapp BE. Nature, 2017, 544: 337–339

    Article  CAS  PubMed  Google Scholar 

  12. Zeng Y, Yan Y, Yan H, Liu C, Li P, Dong P, Zhao Y, Chen J. J Mater Sci, 2018, 53: 6291–6301

    Article  CAS  Google Scholar 

  13. He R, Liu W, Wu Z, An D, Huang M, Wu H, Jiang Q, Ji X, Wu S, Xie Z. Ceram Int, 2018, 44: 3412–3416

    Article  CAS  Google Scholar 

  14. Hildebrand G, Sänger JC, Schirmer U, Mantei W, Dupuis Y, Houbertz R, Liefeith K. Ceramics, 2021, 4: 224–239

    Article  CAS  Google Scholar 

  15. Sun YL, Li Q, Sun SM, Huang JC, Zheng BY, Chen QD, Shao ZZ, Sun HB. Nat Commun, 2015, 6: 8612

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Fedin I, Zhang H, Talapin DV. Science, 2017, 357: 385–388

    Article  CAS  PubMed  Google Scholar 

  17. Yee DW, Lifson ML, Edwards BW, Greer JR. Adv Mater, 2019, 31: 1901345

    Article  Google Scholar 

  18. Chung J, Bieri NR, Ko S, Grigoropoulos CP, Poulikakos D. Appl Phys A, 2004, 79: 1259–1261

    Article  CAS  Google Scholar 

  19. Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ, Poulikakos D. Nanotechnology, 2007, 18: 345202

    Article  Google Scholar 

  20. Pan H, Hwang DJ, Ko SH, Clem TA, Fréchet JMJ, Bäuerle D, Grigoropoulos CP. Small, 2010, 6: 1812–1821

    Article  CAS  PubMed  Google Scholar 

  21. Hong S, Yeo J, Kim G, Kim D, Lee H, Kwon J, Lee H, Lee P, Ko SH. ACS Nano, 2013, 7: 5024–5031

    Article  CAS  PubMed  Google Scholar 

  22. Kim KK, Ha IH, Kim M, Choi J, Won P, Jo S, Ko SH. Nat Commun, 2020, 11: 2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung J, Cho H, Choi SH, Kim D, Kwon J, Shin J, Hong S, Kim H, Yoon Y, Lee J, Lee D, Suh YD, Ko SH. ACS Appl Mater Interfaces, 2019, 11: 15773–15780

    Article  CAS  PubMed  Google Scholar 

  24. Kwon J, Cho H, Suh YD, Lee J, Lee H, Jung J, Kim D, Lee D, Hong S, Ko SH. Adv Mater Technol, 2016, 2: 1600222

    Article  Google Scholar 

  25. Nam VB, Shin J, Choi A, Choi H, Ko SH, Lee D. J Mater Chem C, 2021, 9: 5652–5661

    Article  CAS  Google Scholar 

  26. Shin J, Jeong B, Kim J, Nam VB, Yoon Y, Jung J, Hong S, Lee H, Eom H, Yeo J, Choi J, Lee D, Ko SH. Adv Mater, 2020, 32: 1905527

    Article  CAS  Google Scholar 

  27. Nam VB, Shin J, Yoon Y, Giang TT, Kwon J, Suh YD, Yeo J, Hong S, Ko SH, Lee D. Adv Funct Mater, 2019, 29: 1806895

    Article  Google Scholar 

  28. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert MC, Riediker S. Nature, 2002, 419: 449–450

    Article  CAS  PubMed  Google Scholar 

  29. Thorpe SR, Baynes JW. Amino Acids, 2003, 25: 275–281

    Article  CAS  PubMed  Google Scholar 

  30. Ajandouz EH, Tchiakpe LS, Ore FD, Benajiba A, Puigserver A. J Food Sci, 2001, 66: 926–931

    Article  CAS  Google Scholar 

  31. Friedman M. Lysinoalanine formation in soybean proteins: kinetics and mechanisms. In: Cherry JP, Ed. Food Protein Deterioration. Vol. 206. Chapter 10. Washington: American Chemical Society, 1982. 231–273

    Chapter  Google Scholar 

  32. Finot PA, Bujard E, Mottu F, Mauron J. Availability of the true Schiff’s bases of lysine. Chemical evaluation of the Schiff’s base between lysine and lactose in milk. In: Friedman M, Ed. Protein Crosslinking. Advances in Experimental Medicine and Biology. Vol 86. Boston: Springer. 1977. 343–v365

    Chapter  Google Scholar 

  33. Kobayashi S, Hiroishi K, Tokunoh M, Saegusa T. Macromolecules, 1987, 20: 1496–1500

    Article  CAS  Google Scholar 

  34. Zou GF, Zhao J, Luo HM, McCleskey TM, Burrell AK, Jia QX. Chem Soc Rev, 2013, 42: 439–449

    Article  CAS  PubMed  Google Scholar 

  35. Skliutas E, Lebedevaite M, Kabouraki E, Baldacchini T, Ostrauskaite J, Vamvakaki M, Farsari M, Juodkazis S, Malinauskas M. Nanophotonics, 2021, 10: 1211–1242

    Article  CAS  Google Scholar 

  36. Jansen RJJ, van Bekkum H. Carbon, 1995, 33: 1021–1027

    Article  CAS  Google Scholar 

  37. Martins SIFS, Jongen WMF, van Boekel MAJS. Trends Food Sci Tech, 2000, 11: 364–373

    Article  CAS  Google Scholar 

  38. O’Neill W, Kun Li W. IEEE J Sel Top Quantum Electron, 2009, 15: 462–470

    Article  Google Scholar 

  39. Hsiao WT, Tseng SF, Huang KC, Wang YH, Chen MF. Int J Adv Manuf Technol, 2011, 56: 223–231

    Article  Google Scholar 

  40. Aydinli A, Lo HW, Lee MC, Compaan A. Phys Rev Lett, 1981, 46: 1640–1643

    Article  CAS  Google Scholar 

  41. Arca E, Fleischer K, Shvets IV. J Phys Chem C, 2009, 113: 21074–21081

    Article  CAS  Google Scholar 

  42. Bandara J, Divarathne CM, Nanayakkara SD. Sol Energy Mater Sol Cells, 2004, 81: 429–437

    Article  CAS  Google Scholar 

  43. Luo H, Lin Y, Wang H, Chou CY, Suvorova NA, Hawley ME, Mueller AH, Ronning F, Bauer E, Burrell AK, McCleskey TM, Jia QX. J Phys Chem C, 2008, 112: 20535–20538

    Article  CAS  Google Scholar 

  44. Baker MA, Greaves SJ, Wendler E, Fox V. Thin Solid Films, 2000, 377–378: 473–477

    Article  Google Scholar 

  45. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D. Adv Funct Mater, 2012, 22: 1385–1390

    Article  CAS  Google Scholar 

  46. Tan JMR, Lee YH, Pedireddy S, Baikie T, Ling XY, Wong LH. J Am Chem Soc, 2014, 136: 6684–6692

    Article  CAS  PubMed  Google Scholar 

  47. Yi Q, Wu J, Zhao J, Wang H, Hu J, Dai X, Zou G. ACS Appl Mater Interfaces, 2017, 9: 1602–1608

    Article  CAS  PubMed  Google Scholar 

  48. Kang L, Jin BB, Liu XY, Jia XQ, Chen J, Ji ZM, Xu WW, Wu PH, Mi SB, Pimenov A, Wu YJ, Wang BG. J Appl Phys, 2011, 109: 033908

    Article  Google Scholar 

  49. Costa ACFM, Tortella E, Morelli MR, Kiminami RHGA. J Magn Magn Mater, 2003, 256: 174–182

    Article  CAS  Google Scholar 

  50. Mao HJ, Song C, Xiao LR, Gao S, Cui B, Peng JJ, Li F, Pan F. Phys Chem Chem Phys, 2015, 17: 10146–10150

    Article  CAS  PubMed  Google Scholar 

  51. Merkininkaitė G, Aleksandravičius E, Malinauskas M, Gailevičius D, šakirzanovas S. Opto-Electron Adv, 2022, 5: 210077

    Article  Google Scholar 

  52. Gonzalez-Hernandez D, Varapnickas S, Merkininkaitė G, Čiburys A, Gailevičius D, Šakirzanovas S, Juodkazis S, Malinauskas M. Photonics, 2021, 8: 577

    Article  CAS  Google Scholar 

  53. Son Y, Yeo J, Moon H, Lim TW, Hong S, Nam KH, Yoo S, Grigoropoulos CP, Yang DY, Ko SH. Adv Mater, 2011, 23: 3176–3181

    Article  CAS  PubMed  Google Scholar 

  54. Hong S, Lee H, Yeo J, Ko SH. Nano Today, 2016, 11: 547–564

    Article  CAS  Google Scholar 

  55. Huo F, Zheng Z, Zheng G, Giam LR, Zhang H, Mirkin CA. Science, 2008, 321: 1658–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen Y. Microelectron Eng, 2015, 135: 57–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971172, 21671141, and 21601130) and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions for Optical Engineering in Soochow University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifu Zou.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Jiang, Y., Wang, X. et al. Maillard reaction-derived laser lithography for printing functional inorganics. Sci. China Chem. 65, 1306–1314 (2022). https://doi.org/10.1007/s11426-022-1230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1230-x

Keywords

Navigation