Skip to main content
Log in

In situ synthesis of cobalt nanocrystal hierarchies in a transmission electron microscope

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report a versatile electron beam (e-beam) synthesis method for the local fabrication of ferromagnetic nanocrystals “on demand”. A localized irradiation in a transmission electron microscope (TEM) is used to convert a raw cobalt fluoride material into ferromagnetic metal by means of formation of a short-range ordered distribution of well-defined faceted three-dimensional (3D) cobalt nanocrystals on the carbon substrate. A range of sizes and morphologies can be obtained, depending on the size, intensity, and acceleration voltage of the e-beam and on the initial size/thickness of the 3D raw fluoride materials, with 300 kV acceleration voltage and thermionic LaB6 emission found most favorable. The nanofabrication of locally quasi-monodispersed, small sized, and well-distributed 3D nanocrystals opens up the possibility to generate particle arrays on demand with desirable magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amira. France: Mecury Systems. http://www.amira.com/. Accessed 25 Jan 2012

  • Buffat P, Borel JP (1976) Size effect on melting temperature of gold particles. Phys Rev A 13:2287–2298

    Article  CAS  Google Scholar 

  • Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. London Plenum Press, New York

    Google Scholar 

  • Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Article  CAS  Google Scholar 

  • Giersig M, Hilgendorff M (1999) The preparation of ordered colloidal magnetic particles by magnetophoretic deposition. J Phys D Appl Phys 32:L111–L113

    Article  CAS  Google Scholar 

  • Gnanavel T, Kumar S, Möbus G (2011) In situ fabrication of three dimensional nickel nanobeads by electron beam induced transformation. J Nanosci Nanotechnol 11:1019–1024

    Article  CAS  Google Scholar 

  • Howe LM (1970) Electron displacement damage in cobalt in a high voltage electron microscope. Philos Mag 22:965–981

    Article  CAS  Google Scholar 

  • Hu JQ, Sun YG, Chen ZG (2009) Rapid fabrication of nanocrystals through in situ electron beam irradiation in a transmission electron microscope. J Phys Chem C 113:5201–5205

    Article  CAS  Google Scholar 

  • ImageJ .http://rsb.info.nih.gov/ij/. Accessed 26 Oct 2010

  • Kim JU, Cha SH, Shin K, Jho JY, Lee JC (2005) Synthesis of gold nanoparticles from gold(I)-alkanethiolate complexes with supramolecular structures through electron beam irradiation in TEM. J Am Chem Soc 127:9962–9963

    Article  CAS  Google Scholar 

  • Kim SH, Choi YS, Kang K, Yang SI (2007) Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM. J Alloys Compd 427:330–332

    Article  CAS  Google Scholar 

  • Kim SE, Han YH, Lee BC, Lee JC (2010) One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation. Nanotechnology 21:075302

    Article  Google Scholar 

  • Langheinrich W, Beneking H (1994) The resolution of the inorganic electron beam resist LiF(AlF3). Microelectron Eng 23:287–290

    Article  CAS  Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  CAS  Google Scholar 

  • Li K, Zhang FS (2010) A novel approach for preparing silver nanoparticles under electron beam irradiation. J Nanopart Res 12:1423–1428

    Article  CAS  Google Scholar 

  • Lisiecki I, Salzemann C, Parker D, Albouy P-A, Pileni M-P (2007) Emergence of new collective properties of cobalt nanocrystals ordered in fcc supracrystals: I, structural investigation. J Phys Chem C 111:12625–12631

    Article  CAS  Google Scholar 

  • Liu ZW, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Mahapatra SK, Bogle KA, Dhole SD, Bhoraskar VN (2007) Synthesis of gold and silver nanoparticles by electron irradiation at 5–15 keV energy. Nanotechnology 18:135602

    Article  CAS  Google Scholar 

  • Malac M, Schoefield M, Zhu YM, Egerton RF (2002) Exposure characteristics of cobalt fluoride (CoF2) self-developing electron-beam resist on sub-100 nm scale. J Appl Phys 92:1112–1121

    Article  CAS  Google Scholar 

  • Möbus G, Ojovan M, Cook S, Tsai J, Yang G (2010) Nano-scale quasi-melting of alkali-borosilicate glasses under electron irradiation. J Nucl Mater 396:264–271

    Article  Google Scholar 

  • Murray CB, Sun S, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45:47–56

    Article  CAS  Google Scholar 

  • Ojovan M, Möbus G (2009) On radiation-induced fluidization (Quasi-melting) of silicate glasses. Mat Res Soc Symp Proc 1193:275–282

    Article  Google Scholar 

  • Pan ZW, Dai ZR, Wang ZL (2002) Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Appl Phys Lett 80:309–311

    Article  CAS  Google Scholar 

  • Park JI, Kang NJ, Jun YW, Oh SJ, Ri HC, Cheon J (2002) Superlattice and magnetism directed by the size and shape of nanocrystals. Chem Phys Chem 3:543–547

    Article  CAS  Google Scholar 

  • Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660

    Article  CAS  Google Scholar 

  • Petit C, Taleb A, Pileni MP (1998) Self-organization of magnetic nanosized cobalt particles. Adv Mater 10:259

    Article  CAS  Google Scholar 

  • Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP (2002) Synthesis of hcp-Co nanodisks. J Am Chem Soc 124:12874–12880

    Article  CAS  Google Scholar 

  • Saghi Z, Gnanavel T, Peng Y, Inkson BJ, Cullis AG, Gibbs MR, Mobus G (2008) Tomographic nanofabrication of ultrasharp three-dimensional nanostructures. Appl Phys Lett 93:153102

    Article  Google Scholar 

  • Sellmyer D, Skomski R (eds) (2006) Advanced magnetic nanostructures. Springer, New York

    Google Scholar 

  • Sepulveda-Guzman S, Elizondo-Villarreal N, Torres-Castro DFA, Gao X, Zhou JP, Jose-Yacaman M (2007) In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18:335604

    Article  Google Scholar 

  • Sun SH, Murray CB (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J Appl Phys 85:4325–4330

    Article  CAS  Google Scholar 

  • Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197

    Article  CAS  Google Scholar 

  • Tomoj. http://www.snv.jussieu.fr/~wboudier/softs.html. Accessed 26 Oct 2010

  • Wang F, Malac M, Egerton RF (2006) Energy-loss near-edge fine structures of iron nanoparticles. Micron 37:316–323

    Article  CAS  Google Scholar 

  • Williams DB, Carter B (1996) Transmission electron microscopy. Plenum Press, New York

    Google Scholar 

  • Yan YF, Liu P, Wen JG, To B, Al-Jassim MM (2003) In situ formation of ZnO nanobelts and metallic Zn nanobelts and nanodisks. J Phys Chem B 107:9701–9704

    Article  CAS  Google Scholar 

  • Yen MY, Chiu CW, Chen FR, Kai JJ, Lee CY, Chiu HT (2004) Convergent electron beam induced growth of copper nanostructures: evidence of the importance of a soft template. Langmuir 20:279–281

    Article  CAS  Google Scholar 

  • Zhang Y, Lian J, Wang CM, Jiang W, Ewing RC, Weber WJ (2005) Ion-induced damage accumulation and electron-beam-enhanced recrystallization in SrTiO3. Phys Rev B 72:094112

    Article  Google Scholar 

Download references

Acknowledgements

We thank for partial funding of this project by Engineering and Physical Sciences Research Council (EPSRC), United Kingdom, Grant no. EP/G036748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Möbus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnanavel, T., Möbus, G. In situ synthesis of cobalt nanocrystal hierarchies in a transmission electron microscope. J Nanopart Res 14, 683 (2012). https://doi.org/10.1007/s11051-011-0683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0683-6

Keywords

Navigation