Skip to main content
Log in

Template Assisted Nucleation of Cobalt and Gold Nano-clusters on an Ultrathin Iron Oxide Film

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Being the basic building blocks for nano-magnetic and nano-catalytic devices, regular arrays of nano-clusters play a crucial role in modern nanotechnology. One of the possible fabrication methods of periodic nanostructures consists in exploiting nano-patterned substrates as templates for the self-assembly of the deposited atoms. Here, we have investigated the templating properties of a Moiré superlattice formed at the interface between a FeO(111)-like ultrathin film and a Ni/Fe(001) substrate. Co and Au, representative of elements with high and low oxygen affinity, respectively, have been deposited on the iron oxide film. Scanning tunneling microscopy reveals that Co nucleates preferentially along the corrugated regions of the Moiré superstructure, forming stripes with high aspect ratio. On the other hand, Au atoms nucleate randomly distributed three-dimensional islands on the FeO(111) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Henry CR (2017) 2D-arrays of nanoparticles as model catalysts, Catal Lett 145:731–749

    Article  CAS  Google Scholar 

  2. Wiame F (2015) Strategies for the growth of large-scale self-organized structures. Thin Solid Films 642:258–275

    Article  CAS  Google Scholar 

  3. Baumer M, Freund H-J (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61:127–198

    Article  CAS  Google Scholar 

  4. Huang W (2016) Oxide nanocrystal model catalysts. Acc Chem Res 49:520–527

    Article  CAS  PubMed  Google Scholar 

  5. Papp C (2017) From flat surfaces to nanoparticles: in situ studies of the reactivity of model catalysts. Catal Lett 147:2–19

    Article  CAS  Google Scholar 

  6. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  PubMed  Google Scholar 

  7. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogues J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850–853

    Article  CAS  PubMed  Google Scholar 

  8. Wildberger K, Stepanyuk VS, Lang P, Zeller R, Dederichs PH (1995) Magnetic nanostructures: 4d clusters on Ag(001). Phys Rev Lett 75:509–512

    Article  CAS  PubMed  Google Scholar 

  9. Pileni MP (2001) Nanocrystal self-assemblies: fabrication and collective properties. J Phys Chem B 105:3358–3371

    Article  CAS  Google Scholar 

  10. Voigtlander B, Meyer G, Amer NM (1991) Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy. Phys Rev B 44:10354–10357

    Article  CAS  Google Scholar 

  11. N’Diaye AT, Bleikamp S, Feibelman PJ, Michely T (2006) Two-dimensional Ir cluster lattice on a graphene Moiré on Ir(111). Phys Rev Lett 97:215501

    Article  CAS  PubMed  Google Scholar 

  12. Gavioli L, Cavaliere E, Agnoli S, Barcaro G, Fortunelli A, Granozzi G (2011) Template-assisted assembly of transition metal nanoparticles on oxide ultrathin films. Prog Surf Sci 86:59–81

    Article  CAS  Google Scholar 

  13. Gragnaniello L, Ma T, Barcaro G, Sementa L, Negreiros FR, Fortunelli A, Surnev S, Netzer FP (2012) Ordered arrays of size-selected oxide nanoparticles. Phys Rev Lett 108:195507

    Article  CAS  PubMed  Google Scholar 

  14. Nilius N, Rienks EDL, Rust H-P, Freund H-J (2005) Self-organization of gold atoms on a polar FeO(111) surface. Phys Rev Lett 95:066101

    Article  CAS  PubMed  Google Scholar 

  15. Mutombo P, Gubò R, Berkò A (2016) Interaction of gold with a pinwheel TiO∼1.2 film formed on Rh(111) facet: STM and DFT studies. J Phys Chem C 120:12917 – 12923

    Article  CAS  Google Scholar 

  16. Riva M, Picone A, Bussetti G, Brambilla A, Calloni A, Berti G, Duò L, Ciccacci F, Finazzi M (2014) Oxidation effects on ultrathin Ni and Cr films grown on Fe(001): a combined scanning tunneling microscopy and Auger electron spectroscopy study. Surf Sci 621:55–63

    Article  CAS  Google Scholar 

  17. Calloni A, Berti G, Brambilla A, Riva M, Picone A, Bussetti G, Finazzi M, Ciccacci F, Duò L (2014) Electron spectroscopy investigation of the oxidation of ultra-thin films of Ni and Cr on Fe(001). J Phys Condens Matter 26:445001

    Article  CAS  PubMed  Google Scholar 

  18. Bussetti G, Riva M, Picone A, Brambilla A, Duò L, Finazzi M, Ciccacci F (2012) Martensitic transition during Ni growth on Fe(001): evidence of a precursor phase. N J Phys 14:053048

    Article  CAS  Google Scholar 

  19. Barbier A, Mocuta C, Kuhlenbeck H, Peters KF, Richter B, Renaud G (2000) Atomic structure of the polar NiO(111)-p(2 × 2) surface. Phys Rev Lett 84:2897

    Article  CAS  PubMed  Google Scholar 

  20. Goniakowski J, Noguera C, Giordano L (2007) Prediction of uncompensated polarity in ultrathin films. Phys Rev Lett 98:205701

    Article  CAS  PubMed  Google Scholar 

  21. Gurgul J, Myczak E, Spiridis N, Korecki J (2012) Layer-by-layer epitaxial growth of polar FeO(111) thin films on MgO(111) Surf. Sci 606:711

    CAS  Google Scholar 

  22. Picone A, Riva M, Brambilla A, Giannotti D, Ivashko O, Bussetti G, Finazzi M, Ciccacci F, Duò L (2016) Atomic scale insights into the early stages of metal oxidation: a scanning tunneling microscopy and spectroscopy study of cobalt oxidation. J Phys Chem C 120:5233 – 5241

    Article  CAS  Google Scholar 

  23. Takahashi Y, Miyamachi T, Ienaga K, Kawamura N, Ernst A, Komori F (2016) Orbital selectivity in scanning tunneling microscopy: distance-dependent tunneling process observed in iron nitride. Phys Rev Lett 116:056802

    Article  CAS  PubMed  Google Scholar 

  24. Brune H, Giovannini M, Bromann K, Kern K (1998) Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394:451–453

    Article  CAS  Google Scholar 

  25. Baumer M, Frank M, Heemeier M, Kuhnemuth R, Stempel S, Freund H-J (2000) Nucleation and growth of transition metals on a thin alumina film, Surf Sci 454–456 957–962

  26. Meyer JA, Baikie ID, Kopatzki E, Behm RJ (1996) Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange. Surf Sci 365:L647–L651

    Article  CAS  Google Scholar 

  27. Benedetti S, Stavale F, Valeri S, Noguera C, Freund H-J, Goniakowski J, Nilius N (2013) Steering the growth of metal Ad-particles via interface interactions between a MgO thin film and a Mo support. Adv Funct Mater 23:75–80

    Article  CAS  Google Scholar 

  28. Riva M, Picone A, Giannotti D, Brambilla A, Fratesi G, Bussetti G, Duò L, Ciccacci F, Finazzi M (2015) Mesoscopic organization of cobalt thin films on clean and oxygen-saturated Fe(001) surfaces. Phys Rev B 92:115434

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Duò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picone, A., Giannotti, D., Brambilla, A. et al. Template Assisted Nucleation of Cobalt and Gold Nano-clusters on an Ultrathin Iron Oxide Film. Top Catal 61, 1283–1289 (2018). https://doi.org/10.1007/s11244-018-0983-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0983-5

Keywords

Navigation