Skip to main content
Log in

The effects of the finest grains on the mechanical behaviours of nanocrystalline materials

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This article proposes a new constitutive model to account for effects of the finest grains, with sizes ranging from 2 to 4 nm, on the mechanical behaviours of nanocrystalline (NC) materials. In this model, the normal nanograins (ranging from 20 to 100 nm) were treated as though they were composed of a grain interior (GI) and a grain boundary (GB) affected zone (GBAZ). The finest grains were considered to be part of the GBAZ, denoted as super triple junctions (STJs). For the initial plastic deformation stage of the NC materials, a phenomenological constitutive equation was suggested to predict the deformation behaviours of the GBAZ. The formation of GB dislocation (GBD) pileups provides dramatic strain hardening in deformed NC materials and thereby enhances their ductility. Then, the constitutive equations to describe the plastic deformation of the GI and the GBAZ lattice region were established. In this stage, the GBAZ are already saturated with GBD pileups, and GI deformation is the dominant mechanism. Finally, the mechanical model for the NC materials with the finest grains was built using the self-consistent method, and an overall moderate “work hardening,” sustained over a long range of plastic strain, was predicted. The effects of TJs/STJs on the deformation mechanism were quantitatively analysed. The analysis demonstrated that the existence of the finest grains will simultaneously lead to good strength and good ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asaro RJ, Krysl P, Kad B (2003) Deformation mechanism transitions in nanoscale fcc metals. Philos Mag Lett 83:733–743

    Article  CAS  Google Scholar 

  • Barai P, Weng GJ (2008a) The competition of grain size and porosity in the viscoplastic response of nanocrystalline solids. Int J Plast 24:1380–1410

    Article  CAS  Google Scholar 

  • Barai P, Weng GJ (2008b) Mechanics of creep resistance in nanocrystalline solids. Acta Mech 195:327–348

    Article  Google Scholar 

  • Barai P, Weng GJ (2009) Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding. Int J Plast 25:2410–2434

    Article  CAS  Google Scholar 

  • Barai P, Weng GJ (2011a) A theory of plasticity for carbon nanotube reinforced composites. Int J Plast 27:539–559

    Article  CAS  Google Scholar 

  • Barai P, Weng GJ (2011b) A micro-continuum model for the creep behavior of complex nanocrystalline materials. Int J Eng Sci 49:155–174

    Article  CAS  Google Scholar 

  • Benkstein KD, Martinez CJ, Li GF, Meier DC, Montgomery CB, Semancik S (2006) Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance. J Nanopart Res 8:809–822

    Article  Google Scholar 

  • Budrovic Z, Swygenhoven HV, Derlet PM, Petegem SV, Schmitt B (2004) Plastic deformation with reversible peak broadening in nanocrystalline Ni. Science 304:273–276

    Article  CAS  Google Scholar 

  • Capolungo L, Jochum C, Cherkaoui M, Qu J (2005) Homogenization method for strength and inelastic behavior of nanocrystalline materials. Int J Plast 21:67–82

    Article  CAS  Google Scholar 

  • Capolungo L, Cherkaoui M, Qu J (2007) On the elastic–viscoplastic behavior of nanocrystalline materials. Int J Plast 23:561–591

    Article  CAS  Google Scholar 

  • Chen Y, Schuh CA (2007a) Geometric considerations for diffusion in polycrystalline solids. J Appl Phys 101:063524

    Article  Google Scholar 

  • Chen Y, Schuh CA (2007b) Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials. Scr Mater 57:253–256

    Article  CAS  Google Scholar 

  • Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065

    Article  CAS  Google Scholar 

  • Fedorov AA, Gutkin MYu, Ovid’ko IA (2002) Triple junction diffusion and plastic flow in fine-grained materials. Scr Mater 47:51–55

    Article  CAS  Google Scholar 

  • Fedorov AA, Gutkin MYu, Ovid’ko IA (2003) Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater 51:887–898

    Article  CAS  Google Scholar 

  • Fu HH, Benson DJ, Meyers MA (2001) Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater 49:2567–2582

    Article  CAS  Google Scholar 

  • Fu HH, Benson DJ, Meyers MA (2004) Computational description of nanocrystalline deformation based on crystal plasticity. Acta Mater 52:4413–4425

    Article  CAS  Google Scholar 

  • Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  CAS  Google Scholar 

  • Gleiter H (2008) Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today? Acta Mater 56:5875–5893

    Article  CAS  Google Scholar 

  • Guduru RK, Murty KL, Youssef KM, Scattergood RO, Koch CC (2007) Mechanical behavior of nanocrystalline copper. Mater Sci Eng A 463:14–21

    Article  Google Scholar 

  • Han BQ, Lee Z, Witkin D, Nutt S, Lavernia EJ (2005) Deformation behavior of bimodal nanostructured 5083 Al alloys. Metall Mater Trans A 36:957–965

    Article  Google Scholar 

  • Hemker KJ (2004) Understanding how nanocrystalline metals deform. Science 304:221–223

    Article  CAS  Google Scholar 

  • Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Krieger, Malabar, p 765

    Google Scholar 

  • Hu LL, Zhou JQ (2011) Void evolution in nanocrystalline metal film under uniform tensile stress. Mater Sci Eng A 528:860–867

    Article  Google Scholar 

  • Inoue A, Zhang T, Ishihara S, Saida J, Matsushita M (2001) Preparation and mechanical properties of noncrystalline base bulk alloys. Scr Mater 44:1615–1619

    Article  CAS  Google Scholar 

  • Jiang B, Weng GJ (2003) A composite model for the grain-size dependence of yield stress of nanograined materials. Metall Mater Trans A 34:765–772

    Google Scholar 

  • Jiang B, Weng GJ (2004a) A theory of compressive yield strength of nano-grained ceramics. Int J Plast 20:2007–2026

    Article  CAS  Google Scholar 

  • Jiang B, Weng GJ (2004b) A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J Mech Phys Solids 52:1125–1149

    Article  CAS  Google Scholar 

  • Kaminskii AA, Akchurin MSh, Gainutdinov RV, Takaichi K, Shirakava A, Yagi H, Yanagitani T, Ueda K (2005) Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics. Crystallogr Rep 50:869–873

    Article  CAS  Google Scholar 

  • Khan AS, Farrokh B (2009) Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu an Al: synthesis, experiment, and constitutive modeling. Int J Plast 25:715–732

    Article  Google Scholar 

  • Khan AS, Huang S (1992) Experimental and theoretical study of mechanical behavior of 1100-aluminum in the strain rate range 10–5–104s–1. Int J Plast 8:397–424

    Article  CAS  Google Scholar 

  • Khan AS, Liang RQ (1999) Behavior of three BCC metals over wide range of strain rates and temperatures: experiments and modeling. Int J Plast 15:1089–1109

    Article  CAS  Google Scholar 

  • Khan AS, Liang RQ (2000) Behaviors of three BCC metals during non-proportional multi-axial loadings: experiments and modeling. Int J Plast 16:1443–1458

    Article  CAS  Google Scholar 

  • Khan AS, Zhang HY (2000) Mechanically alloyed nanocrystalline iron and copper mixture: behavior and constitutive modeling over a wide range of strain rates. Int J Plast 16:1477–1492

    Article  CAS  Google Scholar 

  • Khan AS, Farrokh B, Takacs L (2008a) Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater Sci Eng A 489:77–84

    Article  Google Scholar 

  • Khan AS, Farrokh B, Takacs L (2008b) Compressive properties of Cu with different grain sizes: sub-micron to nanometer realm. J Mater Sci 43:3305–3313

    Article  CAS  Google Scholar 

  • Kim HS, Estrin Y, Bush MB (2000) Plastic deformation behaviour of fine-grained materials. Acta Mater 48:493–504

    Article  CAS  Google Scholar 

  • Koch CC (2003a) Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism. J Metastab Nanocryst Mater 18:9–20

    Article  CAS  Google Scholar 

  • Koch CC (2003b) Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr Mater 49:657–662

    Article  CAS  Google Scholar 

  • Koch CC, Morris DG, Lu K, Inoue A (1999) Ductility of nanostructured materials. MRS Bull 24:54–58

    CAS  Google Scholar 

  • Koch CC, Youssef KM, Scattergood RO, Murty KL (2005) Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys. Adv Eng Mater 7:787–794

    Article  CAS  Google Scholar 

  • Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273

    Article  CAS  Google Scholar 

  • Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003a) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405

    Article  CAS  Google Scholar 

  • Kumar KS, Swygenhoven HV, Suresh S (2003b) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774

    Article  CAS  Google Scholar 

  • Kuntz JD, Zhan GD, Mukherjee AK (2004) Nanocrystalline-matrix ceramic composites for improved fracture toughness. MRS Bull 29:22–27

    Article  CAS  Google Scholar 

  • Launey ME, Hofmann DC, Johnson WL, Ritchie RO (2009) Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses. Proc Natl Acad Sci USA 106:4986–4991

    Article  CAS  Google Scholar 

  • Li J, Weng GJ (2007) A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials. Int J Plast 23:2115–2133

    Article  CAS  Google Scholar 

  • Li S, Zhou JQ, Ma L, Xu N, Zhu RT, He XH (2009) Continuum level simulation on the deformation behavior of nanocrystalline nickel. Comput Mater Sci 45:390–397

    Article  CAS  Google Scholar 

  • Liu HL, Huang CZ, Teng XY, Wang H (2008) Effect of special microstructure on the mechanical properties of nanocomposite. Mater Sci Eng A 487:258–263

    Article  Google Scholar 

  • Liu YG, Zhou JQ, Ling X (2010) Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline materials. Mater Sci Eng A 527:1719–1729

    Article  Google Scholar 

  • Lu L, Shen YF, Chen XH, Qian LH, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426

    Article  CAS  Google Scholar 

  • Ma E (2003) Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr Mater 49:663–668

    Article  CAS  Google Scholar 

  • Ma L, Zhou JQ, Zhu RT, Li S (2009) Effects of strain gradient on the mechanical behaviors of nanocrystalline materials. Mater Sci Eng A 507:42–49

    Article  Google Scholar 

  • Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  CAS  Google Scholar 

  • Mirshams RA, Xiao CH, Whang SH, Yin WM (2001) R-curve characterization of the fracture toughness of nanocrystalline nickel thinsheets. Mater Sci Eng A 315:21–27

    Article  Google Scholar 

  • Miura H, Andiarwanto S, Sato K, Sakai T (2002) Preferential dynamic nucleation at triple junction in copper tricrystal during high-temperature deformation. Mater Trans JIM 43:494–500

    Article  CAS  Google Scholar 

  • Narayan RL, Boopathy K, Sen Indrani, Hofmann DC, Ramamurty U (2010) On the hardness and elastic modulus of bulk metallic glass matrix composites. Scr Mater 63:768–771

    Article  CAS  Google Scholar 

  • Ovid’ko IA, Sheinerman AG (2005) Suppression of nanocrack generation in nanocrystalline materials under superplastic deformation. Acta Mater 53:1347–1359

    Article  Google Scholar 

  • Ovid’ko IA, Sheinerman AG (2004) Dislocation climb in nanocrystalline materials under high-strain-rate superplastic deformation. Rev Adv Mater Sci 6:21–27

    Google Scholar 

  • Prasad MJNV, Suwas S, Chokshi AH (2009) Microstructural evolution and mechanical characteristics in nanocrystalline nickel with a bimodal grain-size distribution. Mater Sci Eng A 503:86–91

    Article  Google Scholar 

  • Ramtani S, Dirras G, Bui HQ (2010) A bimodal bulk utral-fine-grained nickel: experimental and micromechanical investigations. Mech Mater 42:522–536

    Article  Google Scholar 

  • Regev M, Botstein O, Bamberger M, Rosen A (2001) Continuous versus interrupted creep in AZ91D magnesium alloy. Mater Sci Eng A 302:51–55

    Article  Google Scholar 

  • Satta A, Pisanu E, Colombo L, Cleri F (2002) Microstructure evolution at a triple junction in polycrystalline silicon. J Phys Condens Matter 14:13003

    Article  CAS  Google Scholar 

  • Schiøtz J, Jacobsen KW (2003) A maximum in the strength of nanocrystalline copper. Science 301:1357–1359

    Article  Google Scholar 

  • Shen F, Zhou JQ, Liu YG, Zhu RT, Zhang S, Wang Y (2010) Deformation twinning mechanism and its effects on the mechanical behaviors of ultrafine grained and nanocrystalline copper. Comput Mater Sci 49:226–235

    Article  CAS  Google Scholar 

  • Siegel RW, Chang SK, Ash BJ, Stone J, Ajayan PM, Doremus RW, Schadler LS (2001) Mechanical behavior of polymer and ceramic matrix nanocomposites. Scr Mater 44:2061–2064

    Article  CAS  Google Scholar 

  • Silva AMT, Machado BF, Gomes HT, Figueiredo JL, Dražić G, Faria JL (2010) Pt nanoparticles supported over Ce–Ti–O: the solvothermal and photochemical approaches for the preparation of catalytic materials. J Nanopart Res 12:121–133

    Article  CAS  Google Scholar 

  • Sun GY, Chen G, Liu CT, Chen GL (2006) Innovative processing and property improvement of metallic glass based composites. Scr Mater 55:375–378

    Article  CAS  Google Scholar 

  • Swygenhoven HV, Weertman JR (2003) Preface to the viewpoint set on: mechanical properties of fully dense nanocrystalline metals. Scr Mater 49:625–627

    Article  Google Scholar 

  • Trelewicz JR, Schuh CA (2007) The Hall–Petch breakdown in nanocrystlline metals: a crossover to glass-like deformation. Acta Mater 55:5948–5958

    Article  CAS  Google Scholar 

  • Tuboltsv V, Savin A, Sakamoto W, Hieno A, Yogo T, Raissanen J (2010) Nanomagnetism in nanocrystalline multiferroic bismuth ferrite lead titanate films. J Nanopart Res. doi:10.1007/s11051-010-0134-9

    Google Scholar 

  • Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res 17:5–8

    Article  CAS  Google Scholar 

  • Wang YM, Chen MW, Zhou FH, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915

    Article  CAS  Google Scholar 

  • Wei YJ, Anand L (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52:2587–2616

    Article  CAS  Google Scholar 

  • Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr Mater 49:297–302

    Article  CAS  Google Scholar 

  • Xia SH, Wang JT (2010) A micromechanical model of toughening behavior in the dual-phase composite. Int J Plast 26:1442–1460

    Article  CAS  Google Scholar 

  • Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl Phys Lett 87:091904

    Article  Google Scholar 

  • Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42

    Article  CAS  Google Scholar 

  • Zheng C, Zhang YW (2006) Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature. Mater Sci Eng A 423:97–101

    Article  Google Scholar 

  • Zhou JQ, Khan AS, Cai R, Chen L (2006) Comparative study on constitutive modeling of tantalum and tantalum tungsten alloy. J Iron Steel Res Int 13:68–74

    Article  CAS  Google Scholar 

  • Zhou JQ, Li YL, Zhang ZZ (2007) The rate-independent constitutive modeling for porous and multi-phase nanocrystalline materials. Acta Mech Solida Sin 20:13–20

    Google Scholar 

  • Zhou JQ, Zhu RT, Zhang ZZ (2008) A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range. Mater Sci Eng A 480:419–427

    Article  Google Scholar 

  • Zhou JQ, Xu L, Zhu RT, Zhang ZZ, He TP, Cheng L (2009) A polycrystalline mechanical model for bulk nanocrystalline materials using the energy approach. J Mater Process Technol 209:5407–5416

    Article  CAS  Google Scholar 

  • Zhu B, Asaro RJ, Krysl P, Bailey R (2005) Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater 53:4825–4838

    Article  CAS  Google Scholar 

  • Zhu RT, Zhou JQ, Jiang H, Liu YG, Ling X (2010a) Multi-scale modeling of shear banding in fully dense nanocrystalline Ni sheet. Mater Sci Eng A 527:1751–1760

    Article  Google Scholar 

  • Zhu RT, Zhou JQ, Li XB, Jiang H, Ling X (2010b) Investigation of shear-banding mechanism in fully dense nanocrystalline Ni sheet. Mater Charact 61:396–401

    Article  CAS  Google Scholar 

  • Zhu RT, Zhou JQ, Jiang H, Zhang DS (2010c) Strain Localization of fully dense nanocrystalline Ni sheet. J Mater Sci 45:759–764

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Key Project of Chinese Ministry of Education (211061), Natural Science Foundation of Hubei Province, National Natural Science Foundation of China (10502025, 10872087) and Natural Science Foundation of Jiangsu Province (BK2007528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Huo, R., Zhou, J. et al. The effects of the finest grains on the mechanical behaviours of nanocrystalline materials. J Nanopart Res 14, 677 (2012). https://doi.org/10.1007/s11051-011-0677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0677-4

Keywords

Navigation