Skip to main content
Log in

Cluster organization in co-sputtered platinum-carbon films as revealed by grazing incidence X-ray scattering

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanostructured platinum-carbon thin films were prepared by magnetron co-sputtering method for designing efficient catalytic thin films, like fuel cells electrodes. The in-depth morphology of composite films was studied using surface sensitive X-ray techniques (grazing incidence small-angle scattering and reflectivity), consolidated by electron microscopy investigations. This study elucidates the growth mode of co-sputtered platinum-carbon thin film: 2-nm-sized platinum clusters are growing in surrounding simultaneously growing carbon columns (20-nm diameter range). In particular, the platinum cluster growth and distribution in the plane of the substrate surface are driven by surface diffusion and coalescence phenomena. Finally, this anisotropic distribution of platinum clusters correlated to the textured morphology of carbon matrix leads to a catalytic thin film morphology very suitable for electrochemical processes in fuel cell electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreazza P, Andreazza-Vignolle C, Rozenbaum JP, Thomann AL, Brault P (2002) Nucleation and initial growth of platinum islands by plasma sputter deposition. Surf Coat Technol 151:122–127

    Article  Google Scholar 

  • Babonneau D (2010) FitGISAXS: software package for modelling and analysis of GISAXS data using IGOR Pro. J Appl Cryst 43:929–936

    Article  CAS  Google Scholar 

  • Babonneau D, Cabioc’h T, Naudon A, Girard JC, Denanot MF (1998) Silver nanoparticles encapsulated in carbon cages obtained by co-sputtering of the metal and graphite. Surf Sci 409:358–371

    Article  CAS  Google Scholar 

  • Babonneau D, Camelio S, Lantiat D, Simonot L, Michel A (2009) Waveguiding and correlated roughness effects in layered nanocomposite thin films studied by grazing-incidence small-angle X-ray scattering. Phys Rev B 80:155446

    Article  Google Scholar 

  • Brault P, Caillard A, Thomann AL, Mathias J, Charles C, Boswell R, Escribano S, Durand J, Sauvage T (2004) Plasma sputtering deposition of platinum into porous fuel cell electrodes. J Phys D 37:3419–3423

    Article  CAS  Google Scholar 

  • Brault P, Josserand C, Bauchire JM, Caillard A, Charles C, Boswell R (2009) Anomalous diffusion mediated by atom deposition into a porous substrate. Phys Rev Lett 102:045901

    Article  Google Scholar 

  • Caillard A, Charles C, Boswell R, Brault P, Coutanceau C (2007) Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency. Appl Phys Lett 90:223119

    Article  Google Scholar 

  • Cavarroc M, Ennadjaoui A, Mougenot M, Brault P, Escalier R, Tessier Y, Durand J, Roualdès S, Sauvage T, Coutanceau C (2009) Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings. Electrochem Commun 11:859–861

    Article  CAS  Google Scholar 

  • Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  CAS  Google Scholar 

  • Evans JW, Bartelt MC (2002) Sland sizes and capture zone areas in submonolayer deposition: Scaling and factorization of the joint probability distribution. Phys Rev B 66:235410

    Article  Google Scholar 

  • Gibaud A (1999) X-ray and neutron reflectivity: principles and applications. Springer, Paris

    Google Scholar 

  • Guizard C, Princivalle A (2009) Preparation and characterization of catalyst thin films. Catal Today 146:367–377

    Article  CAS  Google Scholar 

  • Hazra S, Gibaud A, Laffez P, Sella C (2000) Dependence of matrix and substrate on the morphology of nanocermet thin films. Eur Phys J B 14:363–369

    Article  CAS  Google Scholar 

  • Maaza M, Gibaud A, Sella A, Pardo B, Dunsteter F, Corno J, Bridou F, Vignaud G, Desert A, Menelle A (1999) X-ray scattering by nano-particles within granular thin films, investigation by grazing angle X-ray reflectometry. Eur Phys J B 7:339–345

    Article  CAS  Google Scholar 

  • Mahieu S, Ghekiere P, Depla D, de Gryse R (2006) Biaxial alignment in sputter deposited thin films. Thin Solid Films 515:1229–1240

    Google Scholar 

  • Matsumiya M, Shin W, Izu N, Murayama N (2003) Hydrogen-selective thermoelectric gas sensor. Sensors Actuators B 93:304–308

    Article  Google Scholar 

  • Naudon A, Babonneau D, Thiaudière D, Lequien S (2000) Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions. Phys B 283:69–74

    Article  CAS  Google Scholar 

  • Pedersen JS (1994) Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions. J Appl Cryst 27:595–608

    Article  Google Scholar 

  • Penuelas J, Andreazza P, Andreazza-Vignolle C, Tolentino HCN, De Santis M, Mottet C (2008) Controlling structure and morphology of CoPt nanoparticles through dynamical or static coalescence effects. Phys Rev Lett 100:115502

    Article  CAS  Google Scholar 

  • Rabat H, Brault P (2008) Plasma sputtering deposition of PEMFC porous carbon platinum electrodes. Fuel Cells 8:81–86

    Article  CAS  Google Scholar 

  • Rabat H, Andreazza C, Brault P, Caillard A, Béguin F, Charles C, Boswell R (2009) Carbon/platinum nanotextured films produced by plasma sputtering. Carbon 47:209–214

    Article  CAS  Google Scholar 

  • Renaud G, Lazzari R, Leroy R (2009) Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf Sci Rep 64:255–380

    Article  CAS  Google Scholar 

  • Revenant C, Leroy F, Lazzari R, Renaud G, Henry CR (2004) Quantitative analysis of grazing incidence small-angle X-ray scattering: Pd/MgO (001) growth. Phys Rev B 69:035411

    Article  Google Scholar 

  • Rutkov EV, Tontegonde AY (1996) Determination of the limiting solubility of carbon in platinum. Phys Solid State 38:351–353

    Google Scholar 

  • Tao WH, Tsai CH (2002) H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining. Sensors Actuators B 81:237–247

    Article  Google Scholar 

  • Tsao CS, Chen CY (2004) Small-angle X-ray scattering of carbon-supported Pt nanoparticles for fuel cell. Phys B 353:217–222

    Article  CAS  Google Scholar 

  • Vad T, Hajbolouri F, Haubold HG, Scherer GG, Wokaun A (2004) Anomalous small-angle X-ray scattering study on the nanostructure of co-sputtered platinum/carbon layers. J Phys Chem B 108:12442–12449

    Article  CAS  Google Scholar 

  • Venables J (2000) Introduction to surface and thin film processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vrij A (1979) Mixtures of hard spheres in the Percus–Yevick approximation. Light scattering at finite angles. J Chem Phys 71:3267–3270

    Article  CAS  Google Scholar 

  • Yamamura Y, Tawara H (1996) Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. At Data Nucl Data Tables 62:149–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the SOLEIL French synchrotron committee for beam time allocation and the beamline teams for technical assistance during X-ray scattering experiments. The magnetron sputtering system PulP is made available graciously by MID Dreux Innovation. CNRS is gratefully acknowledged for granting the projects ‘PIE AMELi-0Pt and AMEPlas.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Brault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mougenot, M., Andreazza, P., Andreazza-Vignolle, C. et al. Cluster organization in co-sputtered platinum-carbon films as revealed by grazing incidence X-ray scattering. J Nanopart Res 14, 672 (2012). https://doi.org/10.1007/s11051-011-0672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0672-9

Keywords

Navigation