Skip to main content
Log in

HRTEM analyses of the platinum nanoparticles prepared on graphite particles using coaxial arc plasma deposition

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Platinum nanoparticles with diameters less than ∼5 nm were prepared on graphite particles by the coaxial arc plasma deposition, and the structure of platinum nanoparticles was investigated using high-resolution transmission electron microscopy. {110} facets of platinum nanoparticles parallel to the surface (0001) planes of graphite particles were most frequently observed. The platinum nanoparticles were found to be anisotropically deformed from the bulk face-centered cubic structure, and the lattice parameters of platinum nanoparticles were estimated by assuming monoclinic structures. No correlation was observed between the diameter and the lattice parameters of the platinum nanoparticles. Approximately two-thirds of the platinum nanoparticles were compressively strained, and the other platinum nanoparticles showed the expanded unit cells. The cube root of monoclinic unit cell of the platinum nanoparticles varied from a compression of 5.9% to an expansion of 2.8% as compared with the bulk lattice constant of platinum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agawa A, Kunimatsu M, Ito T, Kuwahara Y, Yamashita H (2015) Preparation of Pt/C catalyst by coaxial arc plasma deposition for polymer electrolyte membrane fuel cells. ECS Electrochem Lett 4:F57–F60. doi:10.1149/2.0091510ee1

    Article  Google Scholar 

  • Berry CR (1952) Electron diffraction from small crystals. Phys Rev 88:596–599. doi:10.1103/PhysRev.88.596

    Article  Google Scholar 

  • Birringer R, Zimmer P (2009) Grain- and phase-boundary stress effects in nanocrystalline materials. Acta Mater 57:1703–1716. doi:10.1016/j.actamat.2008.11.040

    Article  Google Scholar 

  • Boswell FWC (1951) Precise determination of lattice constants by electron diffraction and variations in the lattice constants of very small crystallites. Proc Phys Soc Lond A 64:465–476. doi:10.1088/0370-1298/64/5/305

    Article  Google Scholar 

  • Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma J-Y, Su D, Huang X (2016) Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354:1410–1414. doi:10.1126/science.aah6133

    Article  Google Scholar 

  • Daio T, Staykov A, Guo L, Liu J, Tanaka M, Lyth SM, Sasaki K (2015) Lattice strain mapping of platinum nanoparticles on carbon and SnO2 supports. Sci Rep 5:13126. doi:10.1038/srep13126

    Article  Google Scholar 

  • Finch GI, Fordham S (1936) The effect of crystal-size on lattice-dimensions. Proc Phys Soc 48:85–94. doi:10.1088/0959-5309/48/1/312

    Article  Google Scholar 

  • Gholami R, Alyani M, Smith KJ (2015) Deactivation of Pd catalysts by water during low temperature methane oxidation relevant to natural gas vehicle converters. Catalysts 5:561–594. doi:10.3390/catal5020561

    Article  Google Scholar 

  • Giorgio S, Henry CR, Chapon C, Penisson JM (1990) Structure and morphology of small palladium particles (2-6 nm) supported on MgO micro-cubes. J Cryst Growth 110:254–260. doi:10.1016/0022-0248(90)90628-X

    Article  Google Scholar 

  • Heinemann K, Poppa H (1985) In-situ TEM evidence of lattice expansion of very small supported palladium particles. Surf Sci 156:265–274. doi:10.1016/0039-6028(85)90583-7

    Article  Google Scholar 

  • Hinokuma S, Murakami K, Uemura K, Matsuda M, Ikeue K, Tsukahara N, Machida M (2009) Arc plasma processing of Pt and Pd catalysts supported on α-Al2O3 powders. Top Catal 52:2108–2111. doi:10.1007/s11244-009-9387-x

    Article  Google Scholar 

  • Kattel S, Wang G (2014) Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface. J Chem Phys 141:124713-1–124713-8. doi:10.1063/1.4896604

    Article  Google Scholar 

  • Khatee S, Guerreo S, Su D, Darling RM, Protsailo LV, Shaoc M (2016) Fuel cell performance of palladium-platinum Core-Shell Electrocatalysts synthesized in gram-scale batches. J Electrochem Soc 163:F708–F713. doi:10.1149/2.1301607jes

    Article  Google Scholar 

  • Klimenkov M, Nepijko S, Kuhlenbeck H, Bfiumer M, Schlögl R, Freund H-J (1997) The structure of Pt-aggregates on a supported thin aluminum oxide film in comparison with unsupported alumina: a transmission electron microscopy study. Surf Sci 391:27–36. doi:10.1016/S0039-6028(97)00449-4

    Article  Google Scholar 

  • Lamber R, Wetjen S, Jaeger N (1995) Size dependence of the lattice parameter of small palladium particles. Phys Rev B 51:10968. doi:10.1103/PhysRevB.51.10968

    Article  Google Scholar 

  • Lennard-Jones JE, Dent BM (1928) The change in lattice spacing at a crystal boundary. Proc R Soc London A 121:247–259. doi:10.1098/rspa.1928.0194

    Article  Google Scholar 

  • Leontyev IN, Kuriganova AB, Leontyev NG, Hennet L, Rakhmatullin A, Smirnova NV, Dmitriev V (2014) Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations. RSC Adv 4:35959–35965. doi:10.1039/c4ra04809a

    Article  Google Scholar 

  • Markovic NM, Adžić RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377:249–259. doi:10.1016/0022-0728(94)03467-2

    Article  Google Scholar 

  • Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819. doi:10.1103/PhysRevLett.81.2819

    Article  Google Scholar 

  • Miyabayashi K, Miyake M (2016) Platinum nanoparticles modified with perfluorinated alkylamines as a model cathode catalyst for fuel cells. Electroanalysis 28:1–10. doi:10.1002/elan.201600625

    Article  Google Scholar 

  • Miyazawa K, Satsuki H, Kuwabara M, Akaishi M (2001) Microstructural analysis of high-pressure compressed C60. J Mater Res 16:1960–1966. doi:10.1557/JMR.2001.0268

    Article  Google Scholar 

  • Qi WH, Huang BY, Wang MP, Yin ZM, Li J (2009) Molecular dynamic simulation of the size and shape-dependent lattice parameter of small platinum nanoparticles. J Nanopart Res 11:575–580. doi:10.1007/s11051-008-9392-1

    Article  Google Scholar 

  • Sepp S, Vaarmets K, Nerut J, Tallo I, Tee E, Kurig H, Aruväli J, Kanarbik R, Lust E (2016) Performance of polymer electrolyte membrane fuel cell single cells prepared using hierarchical microporous-mesoporous carbon supported Pt nanoparticles activated catalysts. Electrochim Acta 203:221–229. doi:10.1016/j.electacta.2016.03.158

    Article  Google Scholar 

  • Shao M, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–2719. doi:10.1021/nl2017459

    Article  Google Scholar 

  • Solliard C, Flueli M (1985) Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf Sci 156:487–494. doi:10.1016/0039-6028(85)90610-7

    Article  Google Scholar 

  • Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460. doi:10.1038/NCHEM.623

    Article  Google Scholar 

  • Tran R, Xu Z, Radhakrishnan B, Winston D, Sun W, Persson KA, Ong SP (2016) Data descriptor: surface energies of elemental crystals. Scientific Data 3:160080. doi:10.1038/sdata.2016.80

    Article  Google Scholar 

  • Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302. doi:10.1021/ja9067645

    Article  Google Scholar 

  • Wang X, Orikasa Y, Takesue Y, Inoue H, Nakamura M, Minato T, Hoshi H, Uchimoto Y (2013) Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction. J Am Chem Soc 135:5938–5941. doi:10.1021/ja312382h

    Article  Google Scholar 

  • Zhang HY, Lu K, Hu ZQ (1995) Formation and lattice distortion of nanocrystalline selenium. Nanostruct Mater 6:489–492. doi:10.1016/0965-9773(95)00103-4

    Article  Google Scholar 

  • Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135. doi:10.1002/anie.200462335

    Article  Google Scholar 

Download references

Acknowledgements

A part of this work was conducted at Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. This study is based on the results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). The authors are grateful to Mr. Makoto Mori (TUS), Mr. Yuta Nakajo (TUS), Mr. Yorito Nishizawa (TUS), Mr. Kazuki Kasahara (TUS), and Ms. Yurie Inoue (TUS) for preparing the graphite particles with Pt NPs by CAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun’ichi Miyazawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazawa, K., Yoshitake, M. & Tanaka, Y. HRTEM analyses of the platinum nanoparticles prepared on graphite particles using coaxial arc plasma deposition. J Nanopart Res 19, 191 (2017). https://doi.org/10.1007/s11051-017-3895-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3895-6

Keywords

Navigation