Skip to main content
Log in

Novel fluorescent security marker. Part I: morphological and optical properties of 2-amino-6-ethoxy-4-[4-(4-morpholinyl)phenyl]-3,5-pyridinedicarbonitrile nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Newly synthesized fluorescent nanoparticles of 2-amino-6-ethoxy-4-[4-(4-morpholinyl)phenyl]-3,5-pyridinedicarbonitrile have been developed and characterized for possible applications as security marker in paper documents. Nanoparticles have been prepared by reprecipitation in water under sonication. The size and the shape of these nanoparticles, characterized by light scattering and atomic force microscopy, have been found to be highly dependent on sonication power. Typical sizes range from tens to hundreds of nanometers. Furthermore, a remarkable increase in the fluorescence yield has been observed as nanoparticles sizes decrease. Finally, all of the above features, together with the striking stability of optical and mechanical properties over the course of months, allow for straightforward applications that rely on strong and stable fluorescence such as marking important or valuable documents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abyan M, Bîrla L, Bertorelle F, Fery-Forgues S (2005) Morphology control of organic luminescent microcrystals and approach of their optical properties. Comptes Rendus Chimie Matériaux Moléculaires 8:1276–1281

    Article  CAS  Google Scholar 

  • Al-Kaysi RO, Mueller AM, Ahn T-S, Lee S, Bardeen CJ (2005) Effects of sonication on the size and crystallinity of stable zwitterionic organic nanoparticles formed by reprecipitation in water. Langmuir 21:7990–7994

    Article  CAS  Google Scholar 

  • Basta AH, Girgis AS, El-Saied H (2002) Fluorescence behavior of new 3-pyridinecarbonitrile containing compounds and their application in security paper. Dyes Pigments 54:1–10

    Article  CAS  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering. Dover Publications, Mineola

    Google Scholar 

  • Bertorelle F, Lavabre D, Fery-Forgues S (2003) Dendrimer-tuned formation of luminescent organic microcrystals. J Am Chem Soc 125:6244–6253

    Article  CAS  Google Scholar 

  • Blatchford JW, Jessen SW, Lin L-B, Gustafson TL, Fu D-K, Wang H-L, Swager TM, Mac Diarmid AG, Epstein AJ (1996) Photoluminescence in pyridine-based polymers: role of aggregates. Phys Rev B 54:9180–9189

    Article  CAS  Google Scholar 

  • De Spirito M, Missori M, Papi M, Maulucci G, Teixeira J, Castellano C, Arcovito G (2008) Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation. Phys Rev E 77:041801

    Article  Google Scholar 

  • Destrée C, George S, Champagne B, Guillaume M, Ghijsen J, Nagy JB (2008) J-complexes of retinol formed within the nanoparticles prepared from microemulsions. Colloid Polym Sci 286:15–30

    Article  Google Scholar 

  • Fang Q, Wang F, Zhao H, Liu X, Tu R, Wang D, Zhang Z (2008) Strongly coupled excitonic states in H-aggregated single crystalline nanoparticles of 2,5-bis(4-methoxybenzylidene) cyclopentanone. J Phys Chem B 112:2837–2841

    Article  CAS  Google Scholar 

  • Fery-Forgues S, Abyan M, Lamere J-F (2008) Nano- and microparticles of organic fluorescent dyes. Ann N Y Acad Sci 1130:272–279

    Article  CAS  Google Scholar 

  • Fu H-B, Yao J-N (2001) Size effects on the optical properties of organic nanoparticles. J Am Chem Soc 123:1434–1439

    Article  CAS  Google Scholar 

  • Hong QL, Hardcastle J, McKeown RAJ, Marken F, Compton RG (1999) The 20 kHz sonochemical degradation of trace cyanide and dye stuffs in aqueous media. New J Chem 23:845–849

    Article  CAS  Google Scholar 

  • Kang P, Chen C, Hao L, Zhu C, Hu Y, Chen Z (2004) A novel sonication route to prepare anthracene nanoparticles. Mater Res Bull 39:545–551

    Article  CAS  Google Scholar 

  • Kasai H, Nalwa SH, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1992) A novel preparation method of organic microcrystals. Jpn J Appl Phys 31:L1132–L1134

    Article  CAS  Google Scholar 

  • Kasai H, Kamatani H, Okada S, Oikawa H, Matsuda H, Nakanishi H (1996) Size-dependent colors and luminescences of organic microcrystals. Jpn J Appl Phys 35:L221–L223

    Article  CAS  Google Scholar 

  • Kim HY, Bjorklund TG, Lim S-H, Bardeen CJ (2003) Spectroscopic and photocatalytic properties of organic tetracene nanoparticles in aqueous solution. Langmuir 19:3941–3946

    Article  CAS  Google Scholar 

  • Maulucci G, De Spirito M, Arcovito G, Boffi F, Congiu Castellano A, Briganti G (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88:3545–3550

    Article  CAS  Google Scholar 

  • McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772–775

    Article  CAS  Google Scholar 

  • Mishriky N, Asaad FM, Girgis AS, Ibrahim YA (1994) New pyridine carbonitriles from fluoro arylpropanones. Recl Trav Chim Pays-Bas 113:35–39

    Article  CAS  Google Scholar 

  • Perepogu A, Bangal P (2008) Preparation and characterization of free-standing pure porphyrin nanoparticles. J Chem Sci 120:485–491

    Article  CAS  Google Scholar 

  • Provencher S (1982a) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–227

    Article  Google Scholar 

  • Provencher S (1982b) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  • Selih VS, Strlic M, Kolar J, Pihlar B (2007) The role of transition metals in oxidative degradation of cellulose. Polym Degrad Stab 92:1476–1481

    Article  CAS  Google Scholar 

  • Shayu L, Liming H, Fei X, Yi L, Guoqiang Y (2004) Enhanced fluorescent emission of organic nanoparticles of an intramolecular proton transfer compound and spontaneous formation of one-dimensional nanostructures. J Phys Chem B 108:10887–10892

    Article  Google Scholar 

  • Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  CAS  Google Scholar 

  • Teo BM, Grieser F, Ashokkumar M (2009) High intensity ultrasound initiated polymerization of butyl methacrylate in mini- and microemulsions. Macromolecules 42:4479–4483

    Article  CAS  Google Scholar 

  • Xiao D, Xi L, Yang W, Fu H, Shuai Z, Fang Y, Yao J (2003) Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J Am Chem Soc 125:6740–6745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Flavia Pinzari for her help in electron microscope analysis and Dr. Francesca Marini for his close reading and occasional correction of our text in the English language. Some experimental data reported in this paper were obtained at the LABCEMI (Laboratorio Centralizzato di Microscopia, Ottica ed Elettronica) of the Università Cattolica del Sacro Cuore di Roma (Italy) (http://webprd.rm.unicatt.it/pls/unicatt_rm/consultazione.mostra_pagina?id_pagina=20215). The Italian Ministry of Foreign Affairs and the Egyptian Ministry for Scientific Research supported this work through the Executive Program of Scientific and Technological Cooperation between Italy and Egypt in the years 2008–2010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Missori or A. H. Basta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Missori, M., De Spirito, M., Ferrari, L. et al. Novel fluorescent security marker. Part I: morphological and optical properties of 2-amino-6-ethoxy-4-[4-(4-morpholinyl)phenyl]-3,5-pyridinedicarbonitrile nanoparticles. J Nanopart Res 14, 649 (2012). https://doi.org/10.1007/s11051-011-0649-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0649-8

Keywords

Navigation