Skip to main content
Log in

Pyrene-pyridoxine azine as a functional fluorophore: developing LFPs and formulating security ink

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

A biocompatible fluorescent pigment, pyrene-pyridoxine azine (PyPy) derivative, has been designed that can display a vivid yellow hue under natural daylight and a cyano-green luminescence when exposed to UV light in solution. Interestingly, the same compound manifests a rich yellow color along with red fluorescence when integrated into solid-supported materials, like porous papers. Moreover, PyPy exhibits robust adherence to the paper surface, rapid drying, reasonable photostability, and considerable resistance to water, which can be considered advantageous for security-ink application. These observations strongly suggest that this probing molecule holds potential as a functional and environmentally friendly colorant for crafting water-based ink via flexography printing. Further, the notable high intensity of fluorescence, coupled with outstanding surface adhesion characteristics, facilitated the development of latent fingerprints (LFPs). These fingerprints, when illuminated, produce fluorescence images that offer distinct background contrast, thereby unveiling intricate level 1, level 2, and level 3 details on non-porous substrates that aid in individual identification. Moreover, the ink formulation of PyPy facilitated the identification of primary and secondary-level finger-mark details on both porous and non-porous surfaces. These results effectively showcase the successful utilization of the biocompatible PyPy fluorophore in fingerprint analysis, eliminating the necessity for additional adhesives and introducing a promising new tool for LFP detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data reported in this manuscript are available on request.

References

  1. H. Chen, R.L. Ma, Y. Chen, L.J. Fan, Fluorescence development of latent fingerprint with conjugated polymer nanoparticles in aqueous colloidal solution. ACS Appl. Mater. Interfaces 9, 4908–4915 (2017)

    PubMed  Google Scholar 

  2. S. Zhang, R. Liu, Q. Cui, Y. Yang, Q. Cao, W. Xu, L. Li, Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 9, 44134–44145 (2017)

    CAS  PubMed  Google Scholar 

  3. Y.L. Wang, C. Li, H.Q. Qu, C. Fan, P.J. Zhao, R. Tian, M.Q. Zhu, Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission. J. Am. Chem. Soc. 142, 7497–7505 (2020)

    CAS  PubMed  Google Scholar 

  4. H. Zhang, J. You, C. Nie, J. Wang, X. Dong, R. Guan, D. Cao, Q. Chen, Non-conjugated organosilicone fluorescent nanoparticles for latent fingerprint detection. JOL 215, 116582 (2019)

    CAS  Google Scholar 

  5. C.F. Wang, R. Cheng, W.Q. Ji, K. Ma, L. Ling, S. Chen, Recognition of latent fingerprints, and ink-free printing derived from interfacial segregation of carbon dots. ACS Appl. Mater. Interfaces 10, 39205–39213 (2018)

    CAS  PubMed  Google Scholar 

  6. E. Prabakaran, K. Pillay, Nanomaterials for latent fingerprint detection: a review. J. Mater. Res. Technol. 12, 1856–1885 (2021)

    CAS  Google Scholar 

  7. H. Chen, R.L. Ma, Y. Chen, L.J. Fan, fluorescence development of latent fingerprint with conjugated polymer nanoparticles in aqueous colloidal solution. ACS Appl. Mater. Interfaces 9, 4908–4915 (2017)

    PubMed  Google Scholar 

  8. W. Chen, Y. Song, W. Zhang, R. Deng, Y. Zhuang, R.J. Xie, Time-gated imaging of latent fingerprints with level 3 details achieved by persistent luminescent fluoride nanoparticles. ACS Appl. Mater. Interfaces 14, 28230–28238 (2022)

    CAS  PubMed  Google Scholar 

  9. J. Lian, F. Meng, W. Wang, Z. Zhang, Recent trends in fluorescent organic materials for latent fingerprint imaging. Front. Chem. 8, 594864 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. H.Y. Wang, C.Y. Tan, K.K. Yu, K. Li, Y.H. Liu, X.Q. Yu, Multifunctional lipophilic purines: a coping strategy for anti-counterfeiting, lipid droplet imaging and latent fingerprint development. Mater. Chem. Front. 5, 6603–6610 (2021)

    CAS  Google Scholar 

  11. G.S. Sodhi, J. Kaur, Powder method for detecting latent fingerprints: a review. Forensic Sci. Int. 120, 172–176 (2001)

    CAS  PubMed  Google Scholar 

  12. T. Xiao, L. Zhang, D. Chen, Q. Zhang, Q. Wang, Z.Y. Li, X.Q. Sun, A pillar[5]arene-based artificial light-harvesting system with red emission for high-resolution imaging of latent fingerprints. Org. Chem. Front. 10, 3245–3251 (2023)

    CAS  Google Scholar 

  13. M. Wang, D. Shen, Z. Zhu, J. Ju, J. Wu, Y. Zhu, M. Li, C. Yuan, C. Mao, Dual-mode fluorescent development of latent fingerprints using NaYbF4:Tm upconversion nanomaterials. Mater. Today Adv. 8, 100113 (2020)

    Google Scholar 

  14. M.K. Ravindra, G.P. Darshan, D.R. Lavanya, K.M. Mahadevan, H.B. Premkumar, S.C. Sharma, H. Adarsha, H. Nagabhushana, Aggregation induced emission based active conjugated imidazole luminogens for visualization of latent fingerprints and multiple anticounterfeiting applications. Sci. Rep. 11, 16748 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. K.K. Sharma, G.H. Kannikanti, T.R. Baggi, J.R. Vaidya, A pyrene formulation for fluorometric visualization of latent fingermarks. Methods Appl. Fluoresc. 6, 035004 (2018)

    CAS  PubMed  Google Scholar 

  16. H.S. Jung, K.J. Cho, S.J. Ryu, Y. Takagi, P.A. Roche, K.C. Neuman, Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 12, 6641–6650 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. I. Chang, A.C. Stone, O.C. Hanney, W.J. Gee, Volatilised pyrene: a phase 1 study demonstrating a new method of visualising fingermarks with comparisons to iodine fuming. Forensic Sci. Int. 305, 109996 (2019)

    CAS  PubMed  Google Scholar 

  18. G.E. Florence, K.A. Bruce, H.J. Shepherd, W.J. Gee, Metastable 9-fluorenone: blueshifted fluorescence, single-crystal-to-single-crystal reactivity, and evaluation as a multimodal fingermark visualization treatment. Chem. A Eur. J. 25, 9597–9601 (2019)

    CAS  Google Scholar 

  19. K. Ayyavoo, P. Velusamy, Pyrene based materials as fluorescent probes in chemical and biological fields. New J. Chem. 45, 10997–11017 (2021)

    CAS  Google Scholar 

  20. M. Shellaiah, K.W. Sun, Pyrene-based AIE active materials for bioimaging and theranostics applications. Biosensors. 12, 550 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. T.M. Figueira-Duarte, K. Mullen, Pyrene-based materials for organic electronics. Chem. Rev. 111, 7260–7314 (2011)

    CAS  PubMed  Google Scholar 

  22. S. Paul, A. Ray Choudhury, N. Dey, Dual-Mode Multiple Ion Sensing via Analyte-specific modulation of Keto-Enol tautomerization of an ESIPT active pyrene derivative: experimental findings and computational rationalization. ACS omega 8, 6349–6360 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. N. Dey, S. Bhattacharya, Trace level Al3+ detection in aqueous media utilizing luminescent ensembles comprising pyrene laced dynamic surfactant assembly. Dalton Trans. 47, 2352–2359 (2018)

    CAS  PubMed  Google Scholar 

  24. S.L. Pilicer, P.R. Bakhshi, K.W. Bentley, C. Wolf, Biomimetic chirality sensing with pyridoxal-5′-phosphate. J. Am. Chem. Soc. 139, 1758–1761 (2017)

    CAS  PubMed  Google Scholar 

  25. M. Chan-Huot, A. Dos, R. Zander, S. Sharif, P.M. Tolstoy, S. Compton, H.H. Limbach, NMR studies of protonation and hydrogen bond states of internal aldimines of pyridoxal 5′-phosphate acid–base in alanine racemase, aspartate aminotransferase, and poly-l-lysine. J. Am. Chem. Soc. 135, 18160–18175 (2013)

    CAS  PubMed  Google Scholar 

  26. V. Bhardwaj, S.K. AK, S.K. Sahoo, Pyridoxal derived red-emitting aggregates for the ratiometric sensing of pH and copper (II). Opt. Mater. 136, 113414 (2023)

    CAS  Google Scholar 

  27. J. Mandal, N.C. Jana, S.G. Chowdhury, P. Karmakar, A. Saha, Two pyridoxal derived Schiff base chemosensors design for fluorescence sensing of Zn2+ ion in aqueous medium. Inorg. Chem. Commun. 156, 111217 (2023)

    CAS  Google Scholar 

  28. K. He, N. Chen, C. Wang, L. Wei, J. Chen, Method for determining crystal grain size by X-ray diffraction. Cryst. Res. Technol. 53, 1700157 (2018)

    Google Scholar 

  29. N. Dey, Coordination-driven reversible supramolecular assembly formation at biological pH: trace-level detection of Hg2+ and I ions in real life samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 267, 120447 (2022)

    CAS  PubMed  Google Scholar 

  30. R.S. Fernandes, N. Dey, Synthetic supramolecular host for D-(−)-ribose: ratiometric fluorescence response via multivalent lectin-carbohydrate interactions. ChemBioChem 23, e202200044 (2022)

    CAS  PubMed  Google Scholar 

  31. V. Bhardwaj, A. Thangaraj, S. Varddhan, S.K.A. Kumar, G. Crisponi, S.K. Sahoo, An aggregation-induced emission active vitamin B6 cofactor derivative: application in pH sensing and detection of latent fingerprints. Photochem. Photobiol. Sci. 19, 1402–1409 (2020)

    CAS  PubMed  Google Scholar 

  32. V. Kumar, P. Kumar, P. Kaur, K. Singh, A bis-pyrene chalcone based fluorescent material for ratiometric sensing of hydrazine: an acid/base molecular switch and solid-state emitter. Anal. Chim. Acta 1178, 338807 (2021)

    CAS  PubMed  Google Scholar 

  33. R.S. Bhagya, D. Sunil, K. Muthamma, P. Shetty, D.S. Kulkarni, Water-based invisible green flexographic ink for anti-counterfeit applications. Prog. Org. Coat. 173, 107212 (2022)

    CAS  Google Scholar 

  34. H.L. Barros, M.A. Esteves, M.J. Brites, Synthesis, photophysical and electrochemical properties of π-conjugated pyrene based down-shifting molecules with fluorinated aryl groups. Dyes and Pigments 213, 111103 (2023)

    CAS  Google Scholar 

  35. Y. Ge, Y. Wen, H. Liu, T. Lu, Y. Yu, X.B. Li, S.W. Li, B. Yang, A key stacking factor for the effective formation of pyrene excimer in crystals: degree of π–π overlap. J. Mater. Chem. C 8, 11830–11838 (2020)

    CAS  Google Scholar 

  36. N. Dey, D. Biswakarma, A. Gulyani, S. Bhattacharya, Microenvironment sensitive charge-transfer dye for tandem sensing of multiple analytes at mesoscopic interfaces. ACS Sustain. Chem. Eng. 6, 12807–12816 (2018)

    CAS  Google Scholar 

  37. R.S. Fernandes, N. Dey, A combinatorial effect of TICT and AIE on bisulfate detection using a pyrenylated charge-transfer luminogen. Mater. Res. Bull. 163, 112192 (2023)

    CAS  Google Scholar 

  38. D. Devadiga, T.N. Ahipa, Protonation induced redshift in the fluorescence of a pyridine derivative as a potential anti-counterfeiting agent. Soft Matter 18, 8008–8016 (2022)

    CAS  PubMed  Google Scholar 

  39. Z.D. Yu, X.X. Dong, J.Y. Cao, W.X. Zhao, G.H. Bi, C.Z. Wang, T. Zhang, S. Rahman, P.E. Georghiou, J.B. Lin, T. Yamato, Substituent effects on the intermolecular interactions and emission behaviors in pyrene-based mechanochromic luminogens. J. Mater. Chem. C 10, 9310–9318 (2022)

    CAS  Google Scholar 

  40. F. Liu, C. Tang, Q.Q. Chen, S.Z. Li, H.B. Wu, L.H. Xie, W. Huang, Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass. Organic Electronics 10, 256–265 (2009)

    CAS  Google Scholar 

  41. N. Dey, S. Bhattacharya, Mimicking multivalent protein–carbohydrate interactions for monitoring the glucosamine level in biological fluids and pharmaceutical tablets. Chem. Commun. 53, 5392–5395 (2017)

    CAS  Google Scholar 

  42. N. Dey, N. Kumari, D. Biswakarma, S. Jha, S. Bhattacharya, Colorimetric indicators for specific recognition of Cu2+ and Hg2+ in physiological media: effect of variations of signaling unit on optical response. Inorg. Chim. Acta 487, 50–57 (2019)

    CAS  Google Scholar 

  43. J. Li, Z. Jiao, P. Zhang, X. Wan, C. Song, Z. Guo, X. Huangi, B.Z. Tang, Development of AIEgen–montmorillonite nanocomposite powders for computer-assisted visualization of latent fingermarks. Mater. Chem. Front. 4, 2131–2136 (2020)

    CAS  Google Scholar 

  44. M. Rentzhog, Water-based flexographic printing on polymer-coated board; Chemical Science Engineering (Stockholm, KTH, 2006)

    Google Scholar 

  45. K. Muthamma, D. Sunil, P. Shetty, S.D. Kulkarni, P.J. Anand, D. Kekuda, Eco-friendly flexographic ink from fluorene-based Schiff base pigment for anti-counterfeiting and printed electronics applications. Prog. Org. Coat. 161, 106463 (2021)

    CAS  Google Scholar 

  46. D. Maltoni, D. Maio, A. K. Jain, J. Feng J (2022) Handbook of fingerprint recognition. Springer International Publishing, Cham.

  47. J. Wang, Y. Gao, J. Zhang, H. Tian, Invisible photochromism, and optical anti-counterfeiting based on D–A type inverse diarylethene. J. Mater. Chem. C. 5, 4571–4577 (2017)

    CAS  Google Scholar 

  48. A.A. Ahmad, B. Workie, A.A. Mohamed, Diazonium gold salts as novel surface modifiers: what have we learned so far? Surfaces 3, 182–196 (2020)

    Google Scholar 

  49. S. Chen, K. Jia, Y. Fang, C. Liu, C. Yuan, J. Liu, K.P. Wang, Z.Q. Hu, Highly emissive dimethylamino naphthalenyl phenylethene derivatives for visualization of latent fingerprints and imaging of lysosomes. Dyes and Pigments 205, 110534 (2022)

    CAS  Google Scholar 

  50. K. Abhishek, A. Yogi, A minutiae count based method for fake fingerprint detection. Procedia Comput Sci 58, 447–452 (2015)

    Google Scholar 

  51. L.L. Da Luz, R. Milani, J.F. Felix, Inkjet printing of lanthanide–organic frameworks for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 7, 27115–27123 (2015)

    PubMed  Google Scholar 

  52. V. Vaibhav, U. Vijayalakshmi, S.M. Roopan, Agricultural waste as a source for the production of silica nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 139, 515–520 (2015)

    CAS  PubMed  Google Scholar 

  53. K.A. Karthick, K. Kaleeswari, C. Uma Maheswari, G. Sivaraman, B. Shankar, A. Tamilselvi, Novel pyridoxal based molecular sensor for selective turn–on fluorescent switching functionality towards Zn(II) in live cells. J. Photochem. Photobiol. A 428, 113861 (2022)

    CAS  Google Scholar 

  54. O. Kocyigit, E. Guler, Synthesis of 1,3,5-tris(4-(4-nitrophenyliminomethyl)phenoxymethyl)benzene as a new Schiff base and its complexation properties with the (salen and salophen)-bridged Fe/Cr(III). J. Incl. Phenom. Macrocycl. Chem. 67, 287–293 (2010)

    CAS  Google Scholar 

  55. M. F. J. Bohan, P. Townsend, S. M. Hamblyn, T. C. Claypole, and D. T. Gethin, Evaluation of pressures in flexographic printing.

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author (RSF) confirms the responsibility for the following: synthesis of compound and characterization, biocompatibility assay.

The authors (RKJ and KM) confirm the responsibility for the following: investigation, data collection, and validation of security ink formulation and LFP development studies.

The author (DS) confirms the responsibility for supervision, and writing—review and editing of security ink formulation and LFP development studies.

The author (ND) confirms the responsibility for the following: conceptualization, formal analysis, project administration, resources, software, supervision, visualization, writing—original draft, writing—review and editing of synthesis of compound, characterization, and biocompatibility assay.

Corresponding author

Correspondence to Nilanjan Dey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

ESM 1

(DOCX 448 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunil, D., Jain, R.K., Muthamma, K. et al. Pyrene-pyridoxine azine as a functional fluorophore: developing LFPs and formulating security ink. emergent mater. 7, 299–310 (2024). https://doi.org/10.1007/s42247-023-00594-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00594-w

Keywords

Navigation