Skip to main content
Log in

Electrochemical synthesis of nanocrystalline zinc oxide and phase transformations of zinc hydroxides

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoscaled ZnO was synthesized by an electrochemical process using zinc or Al-alloyed zinc electrodes in an aqueous system with acetic acid as a conductive salt. Depending on the synthetical parameters, the precipitated precursor solids were found to consist of various compounds such as zincite, presumably δ-Zn(OH)2, β1-Zn(OH)2, ε-Zn(OH)2, Zn5(CO3)2(OH)6 and, in case an Al-alloyed electrode was used for the synthesis, Zn0.71Al0.29(OH)2 (CO3)0.145·xH2O. The intermediate solids served as precursors for the subsequent thermal treatment resulting in zincite powders with various morphologies. Depending on the processing conditions, zincite was formed between 100 and 260 °C with a mean crystallite size between 6 and 25 nm. Selected zincite powders were pressed to pellets, sintered at temperatures between 900 and 1,100 °C and characterized by measurements of the electrical bulk conductivities, yielding values up to 1.69 S cm−1 in samples with 1.24 wt% Al. Comparison with samples prepared by precipitation methods showed that the latter had values of up to 44 S cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ahcene TA, Monty C, Kouam J, Thorel A, Petot-Ervas G, Djemel A (2007) Preparation by solar physical vapor deposition (SPVD) and nanostructural study of pure and Bi doped ZnO nanopowders. J Eur Ceram Soc 27:3413–3424

    Article  Google Scholar 

  • Aimable A, Buscaglia MT, Buscaglia V, Bowen P (2010) Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution. J Eur Ceram Soc 30:591–598

    Article  CAS  Google Scholar 

  • Al-Dahoudi N, Aegerter MA (2006) Comparative study of transparent conductive In2O3: Sn (ITO) coatings made using a sol and a nanoparticle suspension. Thin Solid Films 502:193–197

    Article  CAS  Google Scholar 

  • Andrés-Vergés M, Martinez-Gallego M (1992) Spherical and rod-like zinc oxide microcrystals: morphological characterization and microstructural evolution with temperature. J Mater Sci 27:3756–3762

    Article  Google Scholar 

  • Andrés-Vergés M, Mifsud A, Serna CJ (1989) Microstructural evolution with temperature of spherical zinc oxide microcrystals produced by spray pyrolysis. Mater Lett 8:115–119

    Article  Google Scholar 

  • Bel Hadj Tahar R, Bel Hadj Tahar N (2005) Crystallographic orientation in pure and aluminum-doped zinc oxide thin films prepared by sol–gel technique. J Am Ceram Soc 88(7):1725–1728

    Article  Google Scholar 

  • Berber M, Bulto V, Kliß R, Hahn H (2005) Transparent nanocrystalline ZnO films prepared by spin coating. Scr Mater 53:547–551

    Article  CAS  Google Scholar 

  • Bitenc M, Marinsek M, Crnjak Orel Z (2008) Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles. J. Eur Ceram Soc 28:2915–2921

    Article  CAS  Google Scholar 

  • Brilis N, Tsamakis D, Ali H, Krishnamoorthy S, Iliadis AA (2008) Electrical conduction effects at low temperatures in undoped ZnO thin films grown by Pulsed Laser Deposition on Si substrates. Thin Solid Films 516:4226–4231

    Article  CAS  Google Scholar 

  • Chandrappa KG, Venkatesha TV, Vathsala K, Shivakumara C (2010) A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles. J Nanopart Res 12:2667–2678

    Article  CAS  Google Scholar 

  • Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Cryst 25:109–121

    Article  CAS  Google Scholar 

  • Choi BG, Kim IH, Kim DH, Lee KS, Lee TS, Cheong B, Baik Y-J, Kim WM (2005) Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter. J Eur Ceram Soc 25:2161–2165

    Article  CAS  Google Scholar 

  • de Andrade MC, Moehlecke S (1994) Indium tin oxide as an optical memory material. Appl Phys A 58:503–506

    Article  Google Scholar 

  • Dierstein A, Natter N, Meyer F, Stephan HO, Kropf C, Hempelmann R (2001) Electrochemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides. Scr Mater 44:2209–2212

    Article  CAS  Google Scholar 

  • El Mir L, Ben Ayadi Z, Saadoun M, Djessas K, von Bardeleben HJ, Alaya S (2007) Preparation and characterization of n-type conductive (Al, Co) co-doped ZnO thin films deposited by sputtering from aerogel nanopowders. Appl Surf Sci 254:570–573

    Article  CAS  Google Scholar 

  • Ellmer K, Mientus R (2008) Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries. Thin Solid Films 516:5829–5835

    Article  CAS  Google Scholar 

  • Giovanoli R, Oswald HR, Feitknecht W (1996) Über die thermische Zersetzung der kristallinen Zinkhydroxide. Helv Chim Acta 49:1971–1983

    Article  Google Scholar 

  • Guillen C, Herrero J (2006) High conductivity and transparent ZnO:Al films prepared at low temperature by DC and MF magnetron sputtering. Thin Solid Films 515:640–643

    Article  CAS  Google Scholar 

  • ICDD (2009) The International Centre for Diffraction Data; PDF2/Release 2009 RDB. Newtown Square, USA

  • ICSD (2010) Inorganic crystal structure database (ICSD), version 1.70, database 2010-1. Fachinformationszentrum Karlsruhe, Germany and National Institute of Standards and Technology, Gaithersburg, USA

  • Iwasaki M, Inubushi Y, Ito S (1997) New route to prepare ultrafine ZnO particles and its reaction mechanism. J Mater Sci Lett 16:1503–1505

    Article  CAS  Google Scholar 

  • Jayaraj MK, Ramachandran A, Ramachandran A, Ramachandran M (2002) Transparent conducting zinc oxide thin film prepared by off-axis rf magnetron sputtering. Bull Mater Sci 25(3):227–230

    Article  CAS  Google Scholar 

  • Jin W, Lee IK, Kompch A, Dörfler U, Winterer M (2007) Chemical vapour synthesis and characterization of chromium doped zinc oxide nanoparticles. J Eur Ceram Soc 27:4333–4337

    Article  CAS  Google Scholar 

  • Kim H, Horwitz JS, Pique A, Gilmore GM, Chrisey DB (1999) Electrical and optical properties of indium tin oxide thin films grown by pulsed laser deposition. Appl Phys A 69:S447–S450

    Article  CAS  Google Scholar 

  • Kitano M, Shiojiri M (1997) Electrochemical reaction of Zn in water and growth of ZnO particles. J Electrochem Soc 144:809–815

    Article  CAS  Google Scholar 

  • Kitano M, Okabe T, Shiojiri M (1996) Morphology and growth mechanism of ZnO particles electro-crystallized on Zn in aqueous solution. J Cryst Growth 166:1116–1120

    Article  CAS  Google Scholar 

  • Li H, Chen Y, Ruan C, Gao W, Xie Y (2001) Preparation of organic–inorganic multifunctional nanocomposite coating via sol-gel routes. J Nanopart Res 3:157–160

    Article  CAS  Google Scholar 

  • Lii DF, Huang JL, Jen IJ, Lin SS, Sajgalik P (2005) Effects of annealing on the properties of indium–tin oxide films prepared by ion beam sputtering. Surf Coat Tech 192:106–111

    Article  CAS  Google Scholar 

  • Lorenz A, Ott J, Harrer M, Preissner EA, Whitehead AH, Schreiber M (2001) Modified citrate gel routes to ZnO-based varistors. J Eur Ceram Soc 21:1887–1891

    Article  CAS  Google Scholar 

  • Ma J, Ji F, Ma HL, Li SY (1996) Electrical and optical properties of ZnO:Al films prepared by an evaporation method. Thin Solid Films 279:213–215

    Article  CAS  Google Scholar 

  • Marinkovic ZV, Mancic L, Milosevic O (2004) The nature of structural changes in nanocrystalline ZnO powders under linear heating conditions. J Eur Ceram Soc 24:1929–1933

    Article  CAS  Google Scholar 

  • Meyer RJ, Pietsch EHE (1956) Gmelins Handbuch der Anorganischen Chemie. 8. Auflage. System Nummer 32: Zink Ergänzungsband. Verlag Chemie GmbH, Weinheim/Bergstrasse, pp 819–833

  • Musat V, Teixeira B, Fortunato E, Monteiro RCC (2006) Effect of post-heat treatment on the electrical and optical properties of ZnO:Al thin films. Thin Solid Films 502:219–222

    Article  CAS  Google Scholar 

  • Ogi T, Iskandar F, Itoh Y, Okuyama K (2006) Characterization of dip-coated ITO films derived from nanoparticles synthesized by low-pressure spray pyrolysis. J Nanopart Res 8:343–350

    Article  CAS  Google Scholar 

  • Oh BY, Jeong MC, Myoung JM (2007) Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films. Appl Surf Sci 253:7157–7161

    Article  CAS  Google Scholar 

  • Ohya Y, Saiki H, Takahashi Y (1994) Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide. J Mater Sci 29:4099–4103

    Article  CAS  Google Scholar 

  • Ohyama M, Kozuka H, Yoko T (1998) Sol–gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation. J Am Ceram Soc 81(6):1622–1632

    Article  CAS  Google Scholar 

  • Paul GK, Bandyopadhyay S, Sen SK (2002) Transport properties of As-prepared Al-doped zinc oxide films using sol–gel method. Phys Stat Sol A 192(2):509–518

    Article  Google Scholar 

  • Raab C, Simkó M, Fiedeler U, Nentwich M, Gazsó A (2008) Herstellungsverfahren von Nanopartikeln und Nanomaterialien, NanoTrust-Dossiers Nr. 006. Institut für Technikfolgen-Abschätzung (ITA), Wien

  • Rabung B (2010) Elektrochemische Synthese von nanoskaligem Zinkoxid und Indium-Zinn-Oxid sowie deren Vorstufen in einem wässrigen System. Dissertation, Saarland University, Saarbrücken

  • Rafla-Yuan H, Cordaro JF (1991) Optical reflectance of aluminium-doped zinc oxide powders. J Appl Phys 69:959–964

    Article  CAS  Google Scholar 

  • Rafla-Yuan H, Cordaro JF (1993) Effects of aluminium doping upon color formation in zinc oxide powders. J Appl Phys 74:4685–4690

    Article  CAS  Google Scholar 

  • Rakhshani AE (2008) Al-doped zinc oxide films grown by successive chemical solution deposition. Appl Phys A 92:413–416

    Article  CAS  Google Scholar 

  • Rodriguez-Paez JE, Caballero AC, Villegas M, Moure C, Duran P, Fernandez JF (2001) Controlled precipitation methods: formation mechanism of ZnO nanoparticles. J Eur Ceram Soc 21:925–930

    Article  CAS  Google Scholar 

  • Rüffler R, Clasen R, Natter H, Dierstein A, Hempelmann R (2000) Innovative processing and synthesis of ceramics, glasses, and composites 4. The American Ceramic Society, St. Louis

    Google Scholar 

  • Schindler P, Althaus H, Feitknecht W (1964) Löslichkeitsprodukte und Freie Bildungsenthalpien von Zinkoxid, amorphem Zinkhydroxid, β1-, β2-, γ-, δ-und ε-Zinkhydroxid. Helv Chim Acta 47:982–991

    Article  CAS  Google Scholar 

  • Schuler T, Aegerter MA (1999) Optical, electrical and structural properties of sol gel ZnO:Al coatings. Thin Solid Films 351:125–131

    Article  CAS  Google Scholar 

  • Shang TM, Sun JH, Zhou QF, Guan MY (2007) Controlled synthesis of various morphologies of nanostructured zinc oxide: flower, nanoplate and urchin. Cryst Res Technol 42:1002–1006

    Article  CAS  Google Scholar 

  • Shkurankov A, Natter H, Hempelmann R (2004) Electrochemical synthesis of nanocrystalline zinc oxide from aqueous electrolytes. In: Russow J, Besenhard J (eds) Grundlagen und Anwendungen der Elektrochemischen Oberflächentechnik, GDCh, pp 247–255

  • Stotter J, Show Y, Wang SY, Swain G (2005) Comparison of the electrical, optical, and electrochemical properties of diamond and indium tin oxide thin-film electrodes. Chem Mater 17:4880–4888

    Article  CAS  Google Scholar 

  • Suwanboon S, Amornpitoksuk P, Haidoux A, Tedenac JC (2008) Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. J Alloys Comp 462:335–339

    Article  CAS  Google Scholar 

  • Takano M, Sato M, Takano I, Otsuki T (2002) Preparation of precursor solutions for ITO thin film formation by a reaction of glucose with In(III) alkoxide and Sn(II) halogenides. Key Eng Mater 206(2):1449–1452

    Article  Google Scholar 

  • Tomantschger K, Palumbo G, Gonzalez F, Natter H, Hempelmann R, Endres F, Erb U, Aust KT (2004) Elektrochemische Synthese nanokristalliner Materialien. In: Suchentrunk R (ed) Jahrbuch Oberflächentechnik 60. Eugen G. Leuze Verlag, Bad Saulgau, pp 23–43

    Google Scholar 

  • Tsuji T, Hirohashi M (2000) Influence of oxygen partial pressure on transparency and conductivity of RF sputtered Al-doped ZnO thin films. Appl Surf Sci 157:47–51

    Article  CAS  Google Scholar 

  • Veith M, Rabung B, Grobelsek I, Klook M, Wagner FE, Quilitz M (2009) Electrochemical Synthesis of Nanocrystalline In2O3:Sn (ITO) in an aqueous system with ammonium acetate as conducting salt. J Nanosci Nanotechnol 9:2616–2627

    Article  CAS  Google Scholar 

  • Zhao J, Jin ZG, Liu XX, Liu ZF (2006) Growth and morphology of ZnO nanorods prepared from Zn(NO3)2/NaOH solutions. J Eur Ceram Soc 26:3745–3752

    Article  CAS  Google Scholar 

  • Zhu M, Huang H, Gong J, Sun C, Jiang X (2007) Role of oxygen desorption during vacuum annealing in the improvement of electrical properties of aluminum doped zinc oxide films synthesized by sol gel method. J Appl Phys 102:043106

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge R. Karos for performing the high-temperature X-ray measurements. Dr. K. Steingröver and K. Gossmann are acknowledged for providing the AZO sample with 1.00 wt% aluminium. Last but not least, we thank C. Hartmann and M. Bonnard for continuously supporting us in the process of publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Veith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grobelsek, I., Rabung, B., Quilitz, M. et al. Electrochemical synthesis of nanocrystalline zinc oxide and phase transformations of zinc hydroxides. J Nanopart Res 13, 5103 (2011). https://doi.org/10.1007/s11051-011-0490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0490-0

Keywords

Navigation