Skip to main content
Log in

Atmospheric pressure chemical vapour synthesis of silicon–carbon nanoceramics from hexamethyldisilane in high temperature aerosol reactor

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silicon–carbon nanoceramics have been synthesised from hexamethyldisilane (HMDS) by the atmospheric pressure chemical vapour synthesis (APCVS). Direct aerosol phase synthesis enables continuous production of high purity materials in one-stage process. The particle formation is based on the decomposition of the precursor in a high temperature reactor. Reaction of the gas phase species leads to homogeneous nucleation and formation of the nanoparticles with a narrow size distribution (geometric mean diameter range of particle number size distribution 160–200 nm with 1.5–1.6 geometric standard deviation at reaction temperatures 800–1200 °C). A systematic investigation of the influence of the process temperature on the powder characteristics, including the particle size, crystallinity, chemical structure, surface and bulk composition and surface morphology, was carried out. At the reactor temperature of 800 °C, the synthesised nanoparticles were amorphous preceramics containing mostly SiC4, Si–CH2–Si and Si–H units. The composition of the powder turned towards nanocrystalline 3C–SiC (crystal size under 2 nm) when the reaction temperature was increased to 1200 °C. The reaction temperature appeared to be a key parameter controlling the structure and properties of the synthesised powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Backman U, Tapper U, Jokiniemi JK (2004) An aerosol method to synthesize supported metal catalyst nanoparticles. Synth Met 142:169–176

    Article  CAS  Google Scholar 

  • Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kauzlarich SM (2002) Solution reduction synthesis of surface stabilized silicon nanoparticles. Chem Commun 1822–1823

  • Borm PJA, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Bullock WJ, Walsh R, King KD (1994) Very-low-pressure pyrolysis of hexamethyldisilane. Kinetic determination of the bond dissociation enthalpy DH° (Me3Si-SiMe3) and implications for the enthalpy of formation of the trimethylsilyl radical. J Phys Chem 98:2595–2601

    Article  CAS  Google Scholar 

  • Carter RS, Harley SJ, Power PP, Augustine MP (2005) Use of NMR spectroscopy in the synthesis and characterization of air- and water-stable silicon nanoparticles from porous silicon. Chem Mater 17:2932–2939

    Article  CAS  Google Scholar 

  • Chang W, Skandan G, Danforth SC, Rose M, Balogh AG, Hahn H, Kear B (1995) Nanostructured ceramics synthesized by chemical vapor condensation. NanoStruct Mater 6:321–324

    Article  CAS  Google Scholar 

  • Choi WK, Ong TY, Tan LS, Loh FC, Tan KL (1998) Infrared and X-ray photoelectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films. J Appl Phys 83:4968–4972

    Article  CAS  Google Scholar 

  • Fonseca JLC, Tasker S, Apperley DC, Badyal JPS (1996) Plasma-enhanced chemical vapour deposition of organosilicon materials: a comparison of hexamethyldisilane and tetramethylsilane precursors. Macromolecules 29:1705–1710

    Article  CAS  Google Scholar 

  • Grundner M, Jacob H (1986) Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy. Appl Phys A 39:73–82

    Article  Google Scholar 

  • Gupta A, Ghosh T, Jacob C (2007) The influence of diluent gas composition and temperature on SiC nanopowder formation by CVD. J Mater Sci 42:5142–5146

    Article  CAS  Google Scholar 

  • Holm J, Roberts JT (2007) Surface chemistry of aerosolized silicon nanoparticles: Evolution and desorption of hydrogen from 6-nm diameter particles. J Am Chem Soc 129:2496–2503

    Article  CAS  Google Scholar 

  • Hory MA, Hérino R, Ligeon M, Muller F, Gaspard F, Mihalcescu I, Vial JC (1995) Fourier transform IR monitoring of porous silicon passivation during post-treatments such as anodic oxidation and contact with organic solvents. Thin Solid Films 255:200–203

    Article  CAS  Google Scholar 

  • Kim MT, Lee J (1997) Characterization of amorphous SiC:H films deposited from hexamethyldisilazane. Thin Solid Films 303:173–179

    Article  CAS  Google Scholar 

  • Klein S, Winterer M, Hahn H (1998) Reduced-pressure chemical vapour synthesis of nanocrystalline silicon carbide powders. Chem Vap Depos 4:143–149

    Article  CAS  Google Scholar 

  • Lam C, Zhang YF, Tang YH, Lee CS, Bello I, Lee ST (2000) Large-scale synthesis of ultrafine Si nanoparticles by ball milling. J Cryst Growth 220:466–470

    Article  CAS  Google Scholar 

  • Liu Q, Wu H-J, Lewis R, Maciel GE, Interrante LV (1999) Investigation of the pyrolytic conversion of poly(silylenemethylene) to silicon carbide. Chem Mater 11:2038–2048

    Article  CAS  Google Scholar 

  • Martin H-P, Müller E, Richter R, Roewer G, Brendler E (1997) Conversion process of chlorine containing polysilanes into silicon carbide. J Mater Sci 32:1381–1387

    Article  CAS  Google Scholar 

  • Matsutani T, Asanuma T, Liu C, Kiuchi M, Takeuchi T (2003) Ion beam-induced chemical vapor deposition with hexamethyldisilane for hydrogenated amorphous silicon carbide and silicon carbonitride films. Surf Coat Technol 169–170:624–627

    Article  Google Scholar 

  • Mayeri D, Phillips BL, Augustine MP, Kauzlarich SM (2001) NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi. Chem Mater 13:765–770

    Article  CAS  Google Scholar 

  • Nayfeh MH, Mitas L (2008) Silicon nanoparticles: new photonic and electronic material at the transition between solid and molecule. In: Kumar V (ed) Nanosilicon, 1st edn. Elsevier, Oxford, pp 1–78

    Chapter  Google Scholar 

  • Okuyama K, Lenggoro IW (2003) Preparation of nanoparticles via spray route. Chem Eng Sci 58:537–547

    Article  CAS  Google Scholar 

  • Rajagopalan T, Wang X, Lahlouh B, Ramkumar C, Dutta P, Gangopadhyay S (2003) Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapour deposition and their structural and optical characterization. J Appl Phys 94:5252–5260

    Article  CAS  Google Scholar 

  • Salonen J, Lehto V-P, Laine E (1997) Thermal oxidation of free-standing porous silicon films. Appl Phys Lett 70:637–639

    Article  CAS  Google Scholar 

  • Schmidt WR, Interrante LV, Doremus RH, Trout TK, Marchetti PS, Maciel GE (1991) Pyrolysis chemistry of an organometallic precursor to silicon carbide. Chem Mater 3:257–267

    Article  CAS  Google Scholar 

  • Soraru GD, Babonneau F, Mackenzie JD (1990) Structural evolutions from polycarbosilane to SiC ceramic. J Mater Sci 25:3886–3893

    Article  CAS  Google Scholar 

  • Tartaj P, Reece M, Moya JS (1998) Electrokinetic behavior and stability of silicon carbide nanoparticulate dispersions. J Am Ceram Soc 81:389–394

    Article  CAS  Google Scholar 

  • Veintemillas S, Madigou V, Rodríguez-Clemente R, Figueras A (1995) Thermodynamic analysis of metalorganic chemical vapour deposition of SiC using tetramethylsilane as precursor I. Identification of the main reactions. J Cryst Growth 148:383–389

    Article  CAS  Google Scholar 

  • Williams EA (1991) NMR spectroscopy of organosilicon compounds. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, part 1. Wiley, Wiltshire, pp 517–545

    Google Scholar 

  • Wróbel AM, Walkiewicz-Pietrzykowska A, Klemberg-Sapieha JE et al (2002) Remote hydrogen plasma chemical vapour deposition of silicon-carbon thin-film materials from a hexamethyldisilane source: characterization of the process and the deposits. J Appl Polym Sci 86:1445–1458

    Article  Google Scholar 

  • Yang CS, Oh KS, Ryu JY, Kim DC et al (2001) A study on the formation and characteristics of the Si-O-C-H composite thin films with low dielectric constant for advanced semiconductor devices. Thin Solid Films 390:113–118

    Article  CAS  Google Scholar 

  • Yu Z, Zhan J, Huang M, Li R, Zhou C, He G, Xia H (2010) Preparation of a hyperbranched polycarbosilane precursor to SiC ceramics following an efficient room-temperature cross-linking process. J Mater Sci 45:6151–6158

    Article  CAS  Google Scholar 

  • Zhang L, Coffer JL, Zerda TW (1998) Properties of luminescent Si nanoparticles in sol-gel matrices. J Sol-Gel Sci Technol 11:267–272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Finnish Funding Agency for Technology and Innovation (TEKES) in the Active Nanocomposite Materials project (40072/08), Academy of Finland decision numbers 118114 (in the FinNano research program) and 122314, and Center of Economic Development, Transport and the Environment/European Social Fund in the SMARC innovations project (S10286). Research has been supported also by the strategic funding of the University of Eastern Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Miettinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miettinen, M., Johansson, M., Suvanto, S. et al. Atmospheric pressure chemical vapour synthesis of silicon–carbon nanoceramics from hexamethyldisilane in high temperature aerosol reactor. J Nanopart Res 13, 4631–4645 (2011). https://doi.org/10.1007/s11051-011-0427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0427-7

Keywords

Navigation