Skip to main content
Log in

Preparation of Silicon Nitride and Oxonitride by Gas-Phase Pyrolysis of Hexamethyldisilazane

  • NEW TECHNOLOGIES OF PREPARATION AND TREATMENT OF MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The technique was developed, the installation was done, and the conditions for the production of Si3N4 and Si2N2O by the method of gas-phase pyrolysis of hexamethyldisilazane (CH3)3-Si-NH-Si-(CH3)3 (HMDS) were experimentally studied. In the experiments, two different methods of inputting the raw material were used—the input of a vapor–gas mixture (bubbling feeder with heating to supply the HMDS vapor in a stream of carrier gases) and input as a gas-droplet stream (pneumatic nozzle). The effect of gas-dynamic synthesis conditions at temperatures up to 1100°C on the properties of silicon oxonitride and silicon nitride nanopowders was studied. The influence of the conditions of mixing the reactants, the volume ratio of nitrogen/ammonia, and the content of HMDS in the vapor–gas mixture on the yield of products was shown. The dependences of the degree of conversion of the feedstock on the gas flow rate and the concentration of ammonia in the gas phase were obtained. The optimal conditions for the pyrolysis process were found: temperature, the ratio of the components of the gas mixture, the conditions of mixing, and the contact times of the phases. X-ray amorphous Si3N4 and Si2N2O powders with particle sizes of 50–200 nm and a specific surface area of up to 15 m2/g and powders of alpha modification of silicon nitride Si3N4 in the form of threadlike crystals with a particle diameter of 50–200 nm were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Samsonov, G.V., Nemetallicheskie nitridy (Nonmetallic Nitrides), Moscow: Metallurgiya, 1969.

  2. Andrievskii, R.A. and Spivak, I.I., Nitrid kremniya i materialy na ego osnove (Silicon Nitride and Materials Based on It), Moscow: Metallurgiya, 1984.

  3. Garshin, A.P., Gropyanov, V.M., Zaitsev, G.P., and Semenov, S.S., Keramika dlya mashinostroeniya (Ceramics for Mechanical Engineering), Moscow: Nauchtekhlitizdat, 2003.

  4. Vikulin, V.V., Si3N4-based products and their application in the aerospace industry, Perspekt. Mater., 2006, no. 5, pp. 14–19.

  5. Shatalin, A.S. and Romashin, A.G., New construction materials based on ceramics and ceramic matrix composites. Part 1: Structural ceramic materials, Perspekt. Mater., 2001, no. 4, pp. 5–16.

  6. Zhuravleva, N.V. and Lukin, E.S., Ceramics based on silicon nitride: a review, Refractories, 1993, vol. 34, nos. 1–2, pp. 13–21.

  7. Andreeva, M.G., Babii, O.A., Gogotsi, Yu.G., Grigor’ev, O.N., Ikonnik, N.K., Trunov, G.V., and Yaro-shenko V.P., Hot pressing, structure, and properties of materials based on silicon nitride, in Materialy na osnove nitridov (Nitride-Based Materials), Kiev: Inst. Probl. Materialoved., 1988, pp. 173–181.

  8. Liu, X.-J., Huang, Zh.-Y., Ge, Q.-M., et al. Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO–Al2O3–SiO2 as sintering additive, J. Eur. Ceram. Soc., 2005, vol. 25, no. 14, pp. 3353–3359.

    Article  CAS  Google Scholar 

  9. Becher, P.F., Painter, G.S., Shibata, N., and Satet, R.L., Influence of additives on anisotropic grain growth in silicon nitride ceramics, Mater. Sci. Eng., A, 2006, vol. 422, pp. 85–91.

    Article  Google Scholar 

  10. Lange, F.F., The sophistication of ceramic science through silicon nitride studies, J. Ceram. Soc. Jpn., 2006, vol. 114, pp. 873–879.

    Article  CAS  Google Scholar 

  11. Satet, R.L., Hoffmann, M.J., and Cannon, R.M., Experimental evidence of the impact of rare-earth elements on particle growth and mechanical behavior of silicon nitride, Mater. Sci. Eng., A, 2006, vol. 422, pp. 66–76.

    Article  Google Scholar 

  12. Wani, M.F., Khan, Z.A., and Hadfield, M., Effect of sintering additives and reinforcement on microhardness values of Si3N4 ceramics and composites, J. Adv. Res. Mech. Eng., 2010, vol. 1, pp. 52–59.

    Google Scholar 

  13. Kargin, Yu.F., Lysenkov, A.S., Ivicheva, S.N., Zakorzhevskii, V.V., Borovinskaya, I.P., Kutsev, S.V., and Solntsev, K.A., Hot-pressed Si3N4 ceramics containing CaO–Al2O3–AlN modifying additives, Inorg. Mater., 2012, vol. 48, no. 11, pp. 1291–1296.

    Article  Google Scholar 

  14. Kargin, Yu.F., Ivicheva, S.N., Ovsyannikov, N.A., Lysenkov, A.S., Chernyavsky, A.S., Alad’ev, N.A., and Kutsev, S.V., Nanofibers Si3N4, Inorg. Mater., 2009, vol. 45, no. 5, pp. 511–516.

    Article  CAS  Google Scholar 

  15. Tatli, Z. and Thompson, D.P., Low temperature densification of silicon nitride using Li2O-based surface coatings, Ceram. Int., 2012, vol. 38, pp. 15–21.

    Article  CAS  Google Scholar 

  16. Perevislov, S.N., Liquid-sintered materials based on silicon nitride with oxide additives in the system MgO–Y2O3–Al2O3, Perspekt. Mater., 2013, no. 10, pp. 47–53.

  17. Perevislov, S.N. and Nesmelov, D.D., Properties of SiC and Si3N4 based composite ceramic with nanosize component, Glass Ceram., 2016, vol. 73, nos. 7–8, pp. 249–252.

  18. Wang, C.M., Pan, X., Rühle, M., Riley, F.L., and Mitomo, M., Silicon nitride crystal structure and observations of lattice defects, J. Mater. Sci., 1996, vol. 31, pp. 5281–5298.

    Article  CAS  Google Scholar 

  19. Tsucuma, K., Shimada, M., and Koisumi, M., Thermal conductivity and microhardness of Si3N4 with and without additives, J. Am. Ceram. Soc. Bull., 1981, vol. 60, no. 9, pp. 910–912.

    Google Scholar 

  20. Andrievskii, R.A. and Lyutikov, R.A., High-temperature dissociation of silicon nitride, Russ. J. Phys. Chem. A, 1996, vol. 70, no. 3, pp. 526–528.

    Google Scholar 

  21. Kopylova, V.P. and Nazarchuk, T.N., Chemical stability of silicon nitride and oxynitride powders, Sov. Powder Metall. Met. Ceram., 1975, vol. 14, no. 10, pp. 812–816.

    Article  Google Scholar 

  22. Grün, R., The crystal structure of β-Si3N4: structural and stability considerations between α- and β-Si3N4, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 1979, vol. 35, pp. 800–804.

    Article  Google Scholar 

  23. Toraya, H., Crystal structure refinement of α-Si3N4 using synchrotron radiation powder diffraction data: unbiased refinement strategy, J. Appl. Crystallogr., 2000, vol. 33, pp. 95–102.

    Article  CAS  Google Scholar 

  24. Hiraga, K., Tsuno, K., Shindo, D., Hirabayashi, M., Hayashi, S., and Hirai, T., Structure of α- and β-Si3N4 observed by 1 MV electron microscopy, Philos. Mag., 1983, vol. 47, pp. 483–496.

    CAS  Google Scholar 

  25. Wendel, J.A. and Goddard, W.A., III, The Hessian biased force field for silicon nitride ceramics: predictions of thermodynamic and mechanical properties for α- and β-Si3N4, J. Chem. Phys., 1992, vol. 97, pp. 5048–5062.

    Article  CAS  Google Scholar 

  26. Yunoshev, A.S., Shock-wave synthesis of cubic silicon nitride, Combust., Explos. Shock Waves (Engl. Transl.), 2004, vol. 40, no. 3, pp. 370–373.

  27. Zerr, A., Miehe, G., Serhgiou, G., Schwarz, M., Kroke, E., Riedel, R., Fuess, H., Kroll, P., and Boehler, R., Synthesis of cubic silicon nitride, Nature, 1999, vol. 400, pp. 340–342.

    Article  CAS  Google Scholar 

  28. Schwarz, M., Miehe, G., Zerr, A., Kroke, E., Poe, B.T., Fuess, H., and Riedel, R., Spinel-Si3N4: multi-anvil press synthesis and structural refinement, Adv. Mater., 2000, vol. 12, pp. 883–887.

    Article  CAS  Google Scholar 

  29. Fainer, N., Rumyantsev, Yu., Kosinova, M., Maximovski, E., Kesler, V., Kirienko, V., and Kuznetsov, F., Low-k dielectrics on base of silicon carbon nitride films, Surf. Coat. Technol., 2007, vol. 201, no. 22, pp. 9269–9274.

    Article  CAS  Google Scholar 

  30. Herlin, N., Luce, M., Musset, E., and Cauchetier, M., Synthesis and characterization of nanocomposite Si/C/N powders by laser spray pyrolysis of hexamethyldisilazane, J. Eur. Ceram. Soc., 1994, vol. 13, no. 4, pp. 285–291.

    Article  CAS  Google Scholar 

  31. Ge, K.K., Ye, L., Han, W.J., Han, Y., and Zhao, T., Pyrolysis of polyborosilazane and its conversion into SiBN ceramic, Adv. Appl. Ceram., 2014, vol. 113, no. 6, pp. 367–371.

    Article  CAS  Google Scholar 

  32. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination, Chichester: Wiley, 1970.

    Google Scholar 

  33. Peter, S., Bernütz, S., Berg, S., and Richter, F., FTIR analysis of α-SiCN:H films deposited by PECVD, Vacuum, 2013, vol. 98, pp. 81–87.

    Article  CAS  Google Scholar 

  34. Tomar, V.K., Patil, L.S., and Gautam, D.K., Deposition and characterization of silicon nitride films using HMDS for photonics applications, J. Optoelectron. Adv. Mater., 2008, vol. 10, no. 10, pp. 2657–2662.

    CAS  Google Scholar 

Download references

Funding

This work was performed according to the State Task of Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, no. 075-00746-19-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Ovsyannikov, Yu. F. Kargin, A. S. Lysenkov, S. N. Ivicheva or K. A. Solntsev.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsyannikov, N.A., Kargin, Y.F., Lysenkov, A.S. et al. Preparation of Silicon Nitride and Oxonitride by Gas-Phase Pyrolysis of Hexamethyldisilazane. Inorg. Mater. Appl. Res. 11, 488–494 (2020). https://doi.org/10.1134/S2075113320020288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020288

Keywords:

Navigation