Skip to main content
Log in

CW laser-induced photothermal conversion and shape transformation of gold nanodogbones in hydrated chitosan films

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We investigate the photothermal conversion and transformation of gold nanoparticles with an initial dogbone shape after dispersion in hydrated chitosan films, which is a representative model of biological tissue, and excitation by a CW diode laser for 1 min. Gold nanodogbones are observed to undergo a distinct modification above a sharp threshold of ~11 W cm−2 and 110 °C. Surprisingly, the very same modification is achieved up to at least 36 W cm−2 and 250 °C. We use an analytical model derived from Gans theory to associate the change in color of the films with the change in shape statistics of these gold nanoparticles. This model proves both convenient and dependable. We interpret the photothermal transformation as a rearrangement of particles with a dogbone shape and an aspect ratio of 4.1 into rods with an aspect ratio of 2.5, where material from the end lobes of the dogbones may relocate to the waists of the rods. In turn, additional transitions to stable gold nanospheres may exhibit fairly slower kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  CAS  Google Scholar 

  • Alpert J, Hamad-Schifferli K (2010) Effect of ligands on thermal dissipation from gold nanorods. Langmuir 26:3786–3789

    Article  Google Scholar 

  • Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109:13138–13142

    Article  CAS  Google Scholar 

  • Calandra P, Giordano C, Longo A, Turco Liveri V (2006) Physicochemical investigation of surfactant-coated gold nanoparticles synthesized in the confined space of dry reversed micelles. Mat Chem Phys 98:494–499

    Article  CAS  Google Scholar 

  • Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15:701–709

    Article  CAS  Google Scholar 

  • Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  Google Scholar 

  • Chen LC, Wei CW, Souris JS, Cheng SH, Chen CT, Yang CS, Li PC, Lo LW (2010a) Enhanced photoacoustic stability of gold nanorods by silica matrix confinement. J Biomed Opt 15:016010

    Article  Google Scholar 

  • Chen YS, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010b) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18:8867–8877

    Article  CAS  Google Scholar 

  • Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990

    Article  CAS  Google Scholar 

  • Dong Y, Ruan Y, Wang H, Zhao Y, Bi D (2004) Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci 93:1553–1558

    Article  CAS  Google Scholar 

  • Dos Santos DS, Goulet PJG, Pieczonka NPW, Oliveira ON, Aroca RF (2004) Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir 20:10273–10277

    Article  CAS  Google Scholar 

  • Eghtedari M, Oraevsky AA, Copland JA, Kotov NA, Conjusteau A, Motamedi M (2007) High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett 7:1914–1918

    Article  CAS  Google Scholar 

  • Eghtedari M, Liopo A, Copland JA, Oraevsky AA, Motamedi M (2009) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9:287–291

    Article  CAS  Google Scholar 

  • Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705

    Article  CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. J Appl Phys 100:044324

    Article  Google Scholar 

  • Fujie T, Matsutani N, Kinoshita M, Okamura Y, Saito A, Takeoka S (2009) Adhesive, flexible, and robust polysaccharide nanosheets integrated for tissue-defect repair. Adv Funct Mater 19:2560–2568

    Article  CAS  Google Scholar 

  • Gans R (1912) Uber die Form ultramikroskopischer Goldteilchen. Ann Phys 37:881–900

    Article  CAS  Google Scholar 

  • Gao J, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070

    Article  CAS  Google Scholar 

  • Goodrich GP, Bao L, Gill-Sharp K, Sang KL, Wang J, Payne JD (2010) Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J Biomed Opt 15:018001

    Article  Google Scholar 

  • Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672

    Article  CAS  Google Scholar 

  • Guo HY, Ruan FX, Lu LH, Hu JW, Pan JA, Yang ZL, Ren B (2009) Correlating the shape, surface plasmon resonance, and surface-enhanced Raman scattering of gold nanorods. J Phys Chem C 113:10459–10464

    Article  CAS  Google Scholar 

  • Horiguchi Y, Honda K, Kato Y, Nakashima N, Niidome Y (2008) Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir 24:12026–12031

    Article  CAS  Google Scholar 

  • Huang CJ, Chiu PH, Wang YH, Meen TH, Yang CF (2007) Synthesis and characterization of gold nanodogbones by the seeded mediated growth method. Nanotechnology 18:395603

    Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy using gold nanoparticles. Lasers Med Sci 23:217–228

    Article  Google Scholar 

  • Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  • Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2:125–132

    Article  CAS  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  • Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf A 295:228–232

    Article  CAS  Google Scholar 

  • Jiang H, Su W, Caracci S, Bunning TJ, Cooper T, Adams WW (1996) Optical waveguiding and morphology of chitosan thin films. J Appl Polym Sci 61:1163–1171

    Article  CAS  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  • Jose J, Manohar S, Kolkman RGM, Steenbergen W, van Leeuwen TG (2009) Imaging of tumor vasculature using Twente photoacoustic systems. J Biophoton 2:707–717

    Article  Google Scholar 

  • Kaczmarek H, Zawadzkia J (2010) Chitosan pyrolysis and adsorption properties of chitosan and its carbonizate. Carbohydr Res 345:941–947

    Article  CAS  Google Scholar 

  • Kang H, Jia B, Li J, Morrish D, Gu M (2010) Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam. Appl Phys Lett 96:063702

    Article  Google Scholar 

  • Khlebtsov NG (2010) Anisotropic properties of plasmonic nanoparticles: depolarized light scattering, dichroism, and birefringence. J Nanophoton 4:041587

    Article  Google Scholar 

  • Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111:1–35

    Article  CAS  Google Scholar 

  • Khlebtsov BN, Khanadeev VA, Khlebtsov NG (2008) Observation of extra-high depolarized light scattering spectra from gold nanorods. J Phys Chem C 112:12760–12768

    Article  CAS  Google Scholar 

  • Khlebtsov B, Khanadeev V, Pylaev T, Khlebtsov N (2011) A new T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments. J Phys Chem C DOI:10.1021/jp2000078

  • Kuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, Yeh CS (2010) Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Ang Chem Int Ed 49:2711–2715

    CAS  Google Scholar 

  • Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452:76–79

    Article  CAS  Google Scholar 

  • Lapotko DO, Lukianova E, Oraevsky AA (2006) Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Laser Surg Med 38:631–642

    Article  Google Scholar 

  • Li PC, Huang SW, Wei CW, Chiou YC, Chen CD, Wang CRC (2005) Photoacoustic flow measurements by use of laser-induced shape transitions of gold nanorods. Opt Lett 30:3341–3343

    Article  Google Scholar 

  • Liao CK, Huang SW, Wei CW, Li PC (2007) Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system. J Biomed Opt 12:064006

    Article  Google Scholar 

  • Link S, El-Sayed MA (2000) Shape and size dependence of radiative, nonradiative, and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  • Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  • Link S, Wang ZL, El-Sayed MA (2000a) How does a gold nanorod melt? J Phys Chem B 104:7867–7870

    Article  CAS  Google Scholar 

  • Link S, Burda C, Nikoobakht B, El-Sayed MA (2000b) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163

    Article  CAS  Google Scholar 

  • Liu Y, Mills EN, Composto RJ (2009) Tuning optical properties of gold nanorods in polymer films through thermal reshaping. J Mat Chem 19:2704–2709

    Article  CAS  Google Scholar 

  • Matteini P, Ratto F, Rossi F, Centi S, Dei L, Pini R (2010a) Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives. Adv Mater 22:4313–4316

    Article  CAS  Google Scholar 

  • Matteini P, Ratto F, Rossi F, Rossi G, Esposito G, Puca A, Albanese A, Maira A, Pini R (2010b) In vivo carotid artery closure by laser activation of hyaluronan-embedded gold nanorods. J Biomed Opt 15:041508

    Article  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. University Press, Cambridge, UK

    Google Scholar 

  • Mishchenko MI, Zakharova NT, Videen G, Khlebtsov NG, Wriedt T (2010) Comprehensive T-matrix reference database: a 2007–2009 update. J Quantitat Spectrosc Radiat Transf 111:650–658

    Article  CAS  Google Scholar 

  • Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523

    Article  CAS  Google Scholar 

  • Mulvaney P, Perez-Juste J, Giersig M, Liz-Marzan LM, Pecharroman C (2006) Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics 1:61–66

    Article  CAS  Google Scholar 

  • Ni W, Kou X, Yang Z, Wang JF (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2:677–686

    Article  CAS  Google Scholar 

  • Niemz MH (2003) Laser-tissue interactions: fundamentals and applications. Springer-Verlag, Berlin Heidelberg, Germany

    Google Scholar 

  • Niidome Y, Urakawa S, Kawahara M, Yamada S (2003) Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation. Jpn J Appl Phys 42:1749–1750

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  • Park K, Koerner H, Vaia RA (2010) Depletion-induced shape and size selection of gold nanoparticles. Nano Lett 10:1433–1439

    Article  CAS  Google Scholar 

  • Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005a) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  CAS  Google Scholar 

  • Perez-Juste J, Rodriguez-Gonzalez B, Mulvaney P, Liz-Marzan LM (2005b) Optical control and patterning of gold-nanorod–poly(vinyl alcohol) nanocomposite films. Adv Funct Mat 15:1065–1071

    Article  CAS  Google Scholar 

  • Petrova H, Perez-Juste J, Pastoriza-Santos I, Hartland GV, Liz-Marzan LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8:814–821

    Article  CAS  Google Scholar 

  • Qiu L, Larson TA, Smith DK, Vitkin E, Zhang S, Modell MD, Itzkan I, Hanlon EB, Korgel BA, Sokolov KV, Perelman LT (2007) Single gold nanorod detection using confocal light absorption and scattering spectroscopy. IEEE J Sel Topics Quantum Electron 13:1730–1738

    Article  CAS  Google Scholar 

  • Qiu L, Larson TA, Vitkin E, Guo L, Hanlon EB, Itzkan I, Sokolov KV, Perelman LT (2010) Gold nanorod light scattering labels for biomedical imaging. Biomed Opt Exp 1:135–142

    Article  CAS  Google Scholar 

  • Ratto F, Locatelli A, Fontana S, Kharrazi S, Ashtaputre S, Kulkarni SK, Heun S, Rosei F (2006) Diffusion dynamics during the nucleation and growth of Ge/Si nanostructures on Si(111). Phys Rev Lett 96:096103

    Article  CAS  Google Scholar 

  • Ratto F, Johnston TW, Heun S, Rosei F (2008) A numerical approach to quantify self-ordering among self-organized nanostructures. Surf Sci 602:249–258

    Article  CAS  Google Scholar 

  • Ratto F, Matteini P, Rossi F, Menabuoni L, Tiwari N, Kulkarni SK, Pini R (2009) Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomedicine 5:143–151

    CAS  Google Scholar 

  • Ratto F, Matteini P, Rossi F, Pini R (2010) Size and shape control in the overgrowth of gold nanorods. J Nanopart Res 12:2029–2036

    Article  CAS  Google Scholar 

  • Ratto F, Matteini P, Centi S, Rossi F, Pini R (2011) Gold nanorods as new nanochromophores for photothermal therapies. J Biophotonics 4:64–73

    Article  CAS  Google Scholar 

  • Rossi F, Matteini P, Ratto F, Menabuoni L, Lenzetti I, Pini R (2008) Laser tissue welding in ophthalmic surgery. J Biophoton 1:331–342

    Article  Google Scholar 

  • Sprunken DP, Omi H, Furukawa K, Nakashima H, Sychugov I, Kobayashi Y, Torimitsu K (2007) Influence of the local environment on determining aspect-ratio distributions of gold nanorods in solution using gans theory. J Phys Chem C 111:14299–14306

    Article  Google Scholar 

  • Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006) Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 17:4431–4435

    Article  CAS  Google Scholar 

  • Tao J, Lu YH, Zheng RS, Lin KQ, Xie ZG, Luo ZF, Li SL, Wang P, Ming H (2008) Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods. Chin Phys Lett 25:4459–4462

    Article  CAS  Google Scholar 

  • Thomsen S (1991) Pathologic analysis of photothermal and photomechanical effects of laser–tissue interactions. Photochem Photobiol 53:825–835

    CAS  Google Scholar 

  • Tollan CM, Marcilla R, Pomposo JA, Rodriguez J, Aizpurua J, Molina J, Mecerreyes D (2009) Irreversible thermochromic behavior in gold and silver nanorod/polymeric ionic liquid nanocomposite films. ACS Appl Mater Interfaces 1:348–352

    Article  CAS  Google Scholar 

  • Ungureanu C, Amelink A, Rayavarapu RG, Sterenborg HJCM, Manohar S, van Leeuwen TG (2010) Differential pathlength spectroscopy for the quantitation of optical properties of gold nanoparticles. ACS Nano 4:4081–4089

    Article  CAS  Google Scholar 

  • Von Maltzahn G, Park JH, Agrawal A, Kishor Bandaru N, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69:3892–3900

    Article  Google Scholar 

  • Wang YT, Teitel S, Dellago C (2005) Surface-driven bulk reorganization of gold nanorods. Nano Lett 5:2174–2178

    Article  CAS  Google Scholar 

  • Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K (2009) Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3:80–86

    Article  CAS  Google Scholar 

  • Xu XD, Cortie MB (2006) Shape change and color gamut in gold nanorods, dumbbells, and dog bones. Adv Funct Mat 16:2170–2176

    Article  CAS  Google Scholar 

  • Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Cosimo Trono for the refractometry measurements and Prof. Stefano Cavalieri for useful discussions. This work was supported by the NANO-TREAT and NANO-CHROM projects of the Health Board of Tuscany and the FP7 NoE Photonics 4 Life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Ratto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratto, F., Matteini, P., Cini, A. et al. CW laser-induced photothermal conversion and shape transformation of gold nanodogbones in hydrated chitosan films. J Nanopart Res 13, 4337–4348 (2011). https://doi.org/10.1007/s11051-011-0380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0380-5

Keywords

Navigation