Skip to main content
Log in

GoldMag nanoparticles with core/shell structure: characterization and application in MR molecular imaging

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

GoldMag is a kind of bi-functional nanoparticle, composed of a gold nanoshell and an iron oxide core. GoldMag combines the antibody immobilization property of gold nanoshell with the superparamagnetic feature of the iron oxide core. Rabbit anti-mouse IgG was immobilized on the surface of GoldMag to synthesize GoldMag-IgG in a single-step process. Transmission electron microscopy, UV/Vis spectrophotometry, zeta potential analysis, dynamic light scattering, enzyme-linked immunosorbent assay, and magnetic resonance imaging (MRI) were employed to characterize the nanostructures and the spectroscopic and magnetic properties of GoldMag and GoldMag-IgG. The antibody encapsulation efficiency of GoldMag was measured as 58.7%, and the antibody loading capacity was 88 μg IgG per milligram of GoldMag. The immunoactivity of GoldMag-IgG was estimated to be 43.3% of that of the original IgG. The cytotoxicity of GoldMag was assessed by MTT assay, which showed that it has only little influence on human dermal lymphatic endothelial cells. MR imaging of different concentrations of ultrasmall superparamagnetic iron oxide, GoldMag, and GoldMag-IgG showed that 3 μg/mL of nanoparticles could significantly affect the MRI signal intensity of GRE T2*WI. The results demonstrate that GoldMag nanoparticles can be effectively conjugated with biomacromolecules and possess great potential for MR molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali AMI, Mayes AG (2010) Preparation of polymeric core–shell and multilayer nanoparticles: surface-initiated polymerization using in situ synthesized photoiniferters. Macromolecules 43:837–844. doi:10.1021/ma9019812

    Article  CAS  Google Scholar 

  • Bosman FT, Cramer-Knijnenburg G, Van Bergen Henegouw J (1983) Efficiency and sensitivity of indirect immunoperoxidase methods. Histochem Cell Biol 77:185–194. doi:10.1007/BF00506561

    Article  CAS  Google Scholar 

  • Boutry S, Burtea C, Laurent S, Toubeau G, Elst LV, Muller RN (2005) Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 53:800–807. doi:10.1002/mrm.20403

    Article  CAS  Google Scholar 

  • Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM (2009) Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:1433–1449. doi:10.1148/rg.295095034

    Article  Google Scholar 

  • Cui YL, Wang YN, Hui WL, Zhang ZF, Xin XF, Chen C (2005) The synthesis of GoldMag nano-particles and their application for antibody immobilization. Biomed Microdevices 7:153–156. doi:10.1007/s10544-005-1596-x

    Article  CAS  Google Scholar 

  • Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi MR, Mohsen Amini, Dinarvand R (2008) Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate. J Drug Target 16:415–423. doi:10.1080/10611860802088630

    Article  CAS  Google Scholar 

  • Gokarn YR, Fesinmeyer RM, Saluja A, Cao S, Dankberg J, Goetze A, Remmele RL, Narhi LO, Brems DN (2009) Ion-specific modulation of protein interactions: anion-induced, reversible oligomerization of a fusion protein. Protein Sci 18:169–179. doi:10.1002/pro.20

    CAS  Google Scholar 

  • Jiang JK, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. doi:10.1007/s11051-008-9446-4

    Article  CAS  Google Scholar 

  • Johng HM, Yoo JS, Yoon TJ, Shin HS, Lee BC, Lee C, Lee JK, Soh KS (2007) Use of magnetic nanoparticles to visualize threadlike structures inside lymphatic vessels of rats. Evid-based Compl Alt 4:77–82. doi:10.1093/ecam/nel057

    Article  Google Scholar 

  • Liang ZH, Wu JX, Huang JL, Tan WP, Ke ML, Liu RY, Huang BJ, Xiao X, Zhao P, Huang WL (2007) Bioactivity and stability analysis of endostatin purified from fermentation supernatant of 293 cells transfected with Ad/rhEndo. Protein Expr Purif 56:205–211. doi:10.1016/j.pep.2007.08.008

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  • Neuberger T, Schopf B, Hofmann H, Hofmann M, Rechenberg BV (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496. doi:10.1016/j.jmmm.2005.01.064

    Article  CAS  Google Scholar 

  • Nicholas AR, Scott MJ, Kennedy NI, Jones MN (2000) Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. Biochim Biophys Acta 1463:167–178. doi:10.1016/S0005-2736(99)00192-3

    Article  CAS  Google Scholar 

  • Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2008) Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8:302–306. doi:10.1021/nl0727056

    Article  CAS  Google Scholar 

  • Perez JM, Josephson L, Weissleder R (2004) Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem 5:261–264. doi:10.1002/cbic.200300730

    Article  CAS  Google Scholar 

  • Shah LK, Amiji MM (2006) Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res 23:2638–2645. doi:10.1007/s11095-006-9101-7

    Article  CAS  Google Scholar 

  • Sun BY, Chiu DT (2005) Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection. Anal Chem 77:2770–2776. doi:10.1021/ac048439n

    Article  CAS  Google Scholar 

  • Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliver Rev 60:1252–1265. doi:10.1016/j.addr.2008.03.018

    Article  CAS  Google Scholar 

  • Sung CK, Hong KA, Lin S, Lee Y, Cha J, Lee JK, Hong CP, Han BS, Jung SI, Kim SH, Yoon KS (2009) Dual-modal nanoprobes for imaging of mesenchymal stem cell transplant by MRI and fluorescence imaging. Korean J Radiol 10:613–622. doi:10.3348/kjr.2009.10.6.613

    Article  Google Scholar 

  • Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, Porter RA (2010) Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods 356:60–69. doi:10.1016/j.jim.2010.02.007

    Article  CAS  Google Scholar 

  • Thorek DLJ, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38. doi:10.1007/s10439-005-9002-7

    Article  Google Scholar 

  • Wang L, Bai J, Li Y, Huang Y (2008) Multifunctional nanoparticles displaying magnetization and near-IR asorption. Angew Chem Int Ed 47:2439–2442. doi:10.1002/anie.200800014

    Article  CAS  Google Scholar 

  • Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed 48:2759–2763. doi:10.1002/anie.200805282

    Article  CAS  Google Scholar 

  • Xu ZC, Hou YL, Sun SH (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699. doi:10.1021/ja073057v

    Article  CAS  Google Scholar 

  • Yu S, Chow GM (2004) Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem 14:2781–2786. doi:10.1039/b404964k

    Article  CAS  Google Scholar 

  • Yurdakal S, Loddo V, Ferrer BB, Palmisano G, Augugliaro V, Farreras JG, Palmisano L (2007) Optical properties of TiO2 suspensions: influence of pH and powder concentration on mean particle size. Ind Eng Chem Res 46:7620–7626. doi:10.1021/ie070205h

    Article  CAS  Google Scholar 

  • Zhang D, Feng XY, Henning TD, Wen L, Lu WY, Pan H, Wu X, Zou LG (2009) MR imaging of tumor angiogenesis using sterically stabilized Gd-DTPA liposomes targeted to CD105. Eur J Radiol 70:180–189. doi:10.1016/j.ejrad.2008.04.022

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express thanks to Prof. Wei Sun for reviewing the manuscript. The study was financed by the National Natural Science Foundation of China (Grant Nos. 30770609, 81071197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguang Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Zou, L., Zhang, D. et al. GoldMag nanoparticles with core/shell structure: characterization and application in MR molecular imaging. J Nanopart Res 13, 3867–3876 (2011). https://doi.org/10.1007/s11051-011-0339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0339-6

Keywords

Navigation