Skip to main content

Advertisement

Log in

One-pot hydrothermal synthesis of an assembly of magnetite nanoneedles on a scaffold of cyclic-diphenylalanine nanorods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The assembly of metal oxide nanoparticles (NPs) on a biomolecular template by a one-pot hydrothermal synthesis method is achieved for the first time. Magnetite (Fe3O4) nanoneedles (length: ~100 nm; width: ~10 nm) were assembled on cyclic-diphenylalanine (cFF) nanorods (length: 2–10 μm; width: 200 nm). The Fe3O4 nanoneedles and cFF nanorods were simultaneously synthesized from FeSO4 and l-phenylalanine by hydrothermal synthesis (220 °C and 22 MPa), respectively. The samples were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Experimental results indicate that Fe3O4 nanoneedles were assembled on cFF nanorods during the hydrothermal reaction. The composite contained 3.3 wt% Fe3O4 nanoneedles without any loss of the original magnetic properties of Fe3O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52. doi:10.1038/nbt927

    Article  CAS  Google Scholar 

  • Banerjee IA, Yu L, Matsui H (2005) Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures. J Am Chem Soc 127:16002–16003. doi:10.1021/ja054907e

    Article  CAS  Google Scholar 

  • Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778. doi:10.1038/35826

    Article  CAS  Google Scholar 

  • Brown R, Kelley C, Wiberley SE (1965) The production of 3-benzylidene-6-isobutylidene-2,5-dioxopiperazine, 3,6-dibenzylidene-2,5-dioxopiperazine, 3-benzyl-6-benzylidene-2,5-dioxopiperazine, and 3,6-dibenzyl-2,5-dioxopiperazine by a variant of Streptomyces noursei. J Org Chem 30:277–280. doi:10.1021/jo01012a066

    Article  CAS  Google Scholar 

  • Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Chem 53:117–166. doi:10.1016/j.pcrysgrow.2007.04.001

    Article  CAS  Google Scholar 

  • Carny O, Shelev DE, Gazit E (2006) Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett 6:1594–1597. doi:10.1021/nl060468l

    Article  CAS  Google Scholar 

  • Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–255. doi:10.1021/nn800820e

    Article  CAS  Google Scholar 

  • Collier CP, Vossmeyer T, Hearth JR (1998) Nanocrystal superlattices. Annu Rev Phys Chem 49:371–404. doi:10.1146/annurev.physchem.49.1.371

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides, 2nd edn. Wiley–VCH Verlag GmbH & Co

  • Fan HM, Yi JB, Yang Y, Kho KW, Tan HR, Shen ZX, Ding J, Sun XW, Olivo MC, Feng YP (2009) Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 3:2798–2808. doi:10.1021/nn9006797

    Article  CAS  Google Scholar 

  • Feng J, Miedaner A, Ahrenkiel P, Himmel ME, Curtis C, Ginley D (2005) Self-assembly of photoactive TiO2-cyclodextrin wires. J Am Chem Soc 127:14968–14969. doi:10.1021/ja054448h

    Article  CAS  Google Scholar 

  • Fu X, Wang Y, Huang L, Sha Y, Gui L, Lai L, Tang Y (2003) Assemblies of metal nanoparticles and self-assembled peptide fibrils—formation of double helical and single-chain arrays of metal nanoparticles. Adv Mater 15:902–906. doi:10.1002/adma.200304624

    Article  CAS  Google Scholar 

  • Gasser U (2009) Crystallization in three- and two-dimensional colloidal suspensions. J Phys Condens Mater 21:203101-1-14. doi:10.1088/0953-8984/21/20/200301

    Google Scholar 

  • Gdaniec M, Liberek B (1986) Structure of cyclo(-l-phenylalanyl-l-phenylalanyl-). Acta Crystallogr Sect C: Cryst Struct Commun 42:1343–1345. doi:10.1107/S0108270186092338

    Article  Google Scholar 

  • Hatakeyama Y, Minami M, Ohara S, Umetsu M, Takami S, Adschiri T (2004) Control of designed high-order DNA conformation as a template for nano particle assembly. Kobunshironbunsyu 61:617–622

    CAS  Google Scholar 

  • Huang J, Kunitake T (2003) Nano-precision replication of natural cellulosic substances by metal oxides. J Am Chem Soc 125:11834–11835. doi:10.1021/ja037419k

    Article  CAS  Google Scholar 

  • Hultgren A, Tanase M, Chen CS, Meyer GJ, Reiche DH (2003) Cell manipulation using magnetic nanowires. J Appl Phys 93:7554–7556. doi:10.1063/1.1556204

    Article  CAS  Google Scholar 

  • Mahalakshmi R, Jesuraja SX, Jerome DS (2006) Growth and characterization of l-phenylalanine. Cryst Res Technol 41:780–783. doi:10.1002/crat.200510668

    Article  CAS  Google Scholar 

  • Nakamoto K (1970) Infrared spectra of inorganic and coordination compounds, 2nd edn. Willy–Interscience, pp 232–239

  • Nie Z, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5:15–25. doi:10.1038/nnano.2009.453

    Article  CAS  Google Scholar 

  • Ostrov N, Gazit E (2010) Genetic engineering of biomolecular scaffolds for the fabrication of organic and metallic nanowire. Angew Chem Int Ed 49:3018–3021. doi:10.1002/anie.200906831

    Article  CAS  Google Scholar 

  • Patolsky F, Weizmann Y, Willner I (2004) Actin-based metallic nanowires as bio-nanotransporters. Nat Mater 3:692–695. doi:10.1038/nmat1205

    Article  CAS  Google Scholar 

  • Pileni MP (2001) Nanocrystal self-assemblies: fabrication and collective properties. J Phys Chem B 105:3358–3371. doi:10.1021/jp0039520

    Article  CAS  Google Scholar 

  • Platt M, Muthukrishnan G, Hancock WO, Williams ME (2005) Millimeter scale alignment of magnetic nanoparticle functionalized microtubles in magnetic fields. J Am Chem Soc 127:15686–15687. doi:10.1021/ja055815s

    Article  CAS  Google Scholar 

  • Sarikaya M, Tamerler C, Jen AK-Y, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585. doi:10.1038/nmat964

    Article  CAS  Google Scholar 

  • Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H, Lindquist SL (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci USA 100:4527–4532. doi:10.1073_pnas.0431081100

    Article  CAS  Google Scholar 

  • Sone ED, Stupp SI (2004) Semiconductor-encapsulated peptide-amphiphile nanofibers. J Am Chem Soc 126:12756–12757. doi:10.1021/ja0499344

    Article  CAS  Google Scholar 

  • Sugimoto T, Muramatsu A, Sakata K, Shindo D (1993) Characterization of hematite particles of different shapes. J Colloid Interf Sci 158:420–428. doi:10.1006/jcis.1993.1274

    Article  CAS  Google Scholar 

  • Tan ST, Wendorff JH, Pietzonka C, Jia ZH, Wang GQ (2006) Biocompatible and biodegradable polymer nanofibers displaying superparamagnetic properties. Chem Phys Chem 6:1461–1465. doi:10.1002/cphc.200500167

    Google Scholar 

  • Tang T, Kotov NA (2005) One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv Mater 17:951–962. doi:10.1002/adma.200401593

    Article  CAS  Google Scholar 

  • Togashi T, Umetsu M, Tsuchizaki H, Ohara S, Naka T, Adschiri T (2006) Simultaneous synthesis and self-assembly of cyclic diphenylalanine at hydrothermal condition. Chem Lett 35:636–637. doi:10.1246/cl2006.636

    Article  CAS  Google Scholar 

  • Wang Y, Li YF, Huang CZ (2009) A one-pot green method for one-dimensional assembly of gold nanoparticles with a novel chitosan-ninhydrin bioconjugate at physiological temperature. J Phys Chem C 113:4315–4320. doi:10.1021/jp809708q

    Article  CAS  Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103. doi:10.1002/anie.200802248

    Article  CAS  Google Scholar 

  • Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103. doi:10.1007/s10853-007-1853-x

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported in part by a Grant-in-Aid for the COE project Giant Molecules and Complex Systems, 2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanari Togashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3426 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Togashi, T., Umetsu, M., Naka, T. et al. One-pot hydrothermal synthesis of an assembly of magnetite nanoneedles on a scaffold of cyclic-diphenylalanine nanorods. J Nanopart Res 13, 3991–3999 (2011). https://doi.org/10.1007/s11051-011-0324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0324-0

Keywords

Navigation