Skip to main content

Advertisement

Log in

Synthesis of hybrid organic–inorganic nanocomposite materials based on CdS nanocrystals for energy conversion applications

  • Special Issue: Nanostructured Materials 2010
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Efficient solar energy conversion is strongly related to the development of new materials with enhanced functional properties. In this context, a wide variety of inorganic, organic, or hybrid nanostructured materials have been investigated. In particular, in hybrid organic–inorganic nanocomposites are combined the convenient properties of organic polymers, such as easy manipulation and mechanical flexibility, and the unique size-dependent properties of nanocrystals (NCs). However, applications of hybrid nanocomposites in photovoltaic devices require a homogeneous and highly dense dispersion of NCs in polymer in order to guarantee not only an efficient charge separation, but also an efficient transport of the carriers to the electrodes without recombination. In previous works, we demonstrated that cadmium thiolate complexes are suitable precursors for the in situ synthesis of nanocrystalline CdS. Here, we show that the soluble [Cd(SBz)2]2·(1-methyl imidazole) complex can be efficiently annealed in a conjugated polymer obtaining a nanocomposite with a regular and compact network of NCs. The proposed synthetic strategies require annealing temperatures well below 200 °C and short time for the thermal treatment, i.e., less than 30 min. We also show that the same complex can be used to synthesize CdS NCs in mesoporous TiO2. The adsorption of cadmium thiolate molecule in TiO2 matrix can be obtained by using chemical bath deposition technique and subsequent thermal annealing. The use of NCs, quantum dots, as sensitizers of TiO2 matrices represents a very promising alternative to common dye-sensitized solar cells and an interesting solution for heterogeneous photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antolini F, Pentimalli M, Di Luccio T, Terzi R, Schioppa M, Re M, Mirenghi L, Tapfer L (2005) Structural characterization of CdS nanoparticles grown in polystyrene matrix by thermolytic process. Mater Lett 59:3181–3187

    Article  CAS  Google Scholar 

  • Basu S, Mondal S, Chatterjee U, Mandal D (2009) Poly(styrene-b-2-(N,N-dimethylamino)ethyl methacrylate) diblock copolymers: micellization and application in the synthesis of photoluminescent CdS nanoparticles. Mater Chem Phys 116:578–585

    Article  CAS  Google Scholar 

  • Beydoun D, Amal R, Low G, McEvoy S (1999) Role of nanoparticles in photocatalysis. J Nanopart Res 1:439–458

    Article  CAS  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  • Burnside SD, Shklover V, Barbè C, Comte P, Arendse F, Brooks K, Gratzel M (1998) Self-organization of TiO2 nanoparticles in thin films. Chem Mater 10:2419–2425

    Article  CAS  Google Scholar 

  • Cha MA, Shin C, Kannaiyan D, Jang YH, Kochuveedu ST, Ryu DY, Kim DH (2009) A versatile approach to fabrication of TiO2 nanostructures with reverse morphology and mesoporous Ag/TiO2 thin films via cooperative PS-b-PEO self-assembly and a sol-gel process. J Mater Chem 19:7245–7250

    Article  CAS  Google Scholar 

  • Chan Y, Steckel JS, Snee PT, Caruge J-M, Hodgkiss JM, Nocera DG, Bawendib MG (2005) Blue semiconductor nanocrystal laser. Appl Phys Lett 86:073102–1–3

    Article  Google Scholar 

  • Di Luccio T, Laera AM, Tapfer L, Kempter S, Kraus R, Nickel B (2006) Controlled nucleation and growth of CdS nanoparticles in a polymer matrix. J Phys Chem B 110:12603–12609

    Article  CAS  Google Scholar 

  • Di X, Kansal SK, Deng W (2009) Preparation, characterization and photocatalytic activity of flowerlike cadmium sulphide nanostructure. Sep Purif Technol 68:61–64

    Article  CAS  Google Scholar 

  • Efros AlL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30:475–521

    Article  CAS  Google Scholar 

  • El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333

    Article  CAS  Google Scholar 

  • Ferrara MC, Altamura D, Schioppa M, Tapfer L, Nichelatti E, Pilloni L, Montecchi M (2008) Growth, characterization and optical properties of nanocrystalline gadolinia thin films prepared by sol–gel dip coating. J Phys D 41:225408–1–9

    Article  Google Scholar 

  • Ferrara MC, Pilloni L, Mazzarelli S, Tapfer L (2010) Hydrophilic and optical properties of nanostructured titania prepared by sol–gel dip coating. J Phys D Appl Phys 43:95301–1–9

    Article  Google Scholar 

  • Forleo A, Francioso L, Capone S, Siciliano P, Lommens P, Hens Z (2010) Synthesis and gas sensing properties of ZnO quantum dots. Sens Actuat B 146:111–115

    Article  Google Scholar 

  • Fragouli D, Resta V, Pompa PP, Laera AM, Caputo G, Tapfer L, Cingolani R, Athanassiou A (2009) Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation. Nanotechnology 20:155302–1–9

    Article  CAS  Google Scholar 

  • Gao Y, Elder SA (2000) TEM study of TiO2 nanocrystals with different particle size and shape. Mater Lett 44:228–232

    Article  CAS  Google Scholar 

  • Gao J, Fu Y, Li X, Du Y, Lü C, Su Z (2008) Synthesis and properties of transparent luminescent nanocomposites with surface functionalized nanocrystals. J Solid State Chem 181:2279–2284

    Article  CAS  Google Scholar 

  • Gaponik N, Hickey SG, Dorfs D, Rogach AL, Eychmüller AE (2010) Progress in the light emission of colloidal semiconductor nanocrystals. Small 6:1364–1378

    Article  CAS  Google Scholar 

  • Gartner M, Parlog C, Osiceanu P (1993) Spectroellipsometric characterization of lanthanide-doped TiO2 films obtained via the sol-gel technique. Thin Solid Films 234:561–565

    Article  CAS  Google Scholar 

  • Graetzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851

    Article  CAS  Google Scholar 

  • He J, Ji W, Ma GH, Tang SH, Kong ESW, Chow SY, Zhang XH, Hua ZL, Shi JL (2005) Ultrafast and large third-order nonlinear optical properties of CdS nanocrystals in polymeric film. J Phys Chem B 109:4373–4376

    Article  CAS  Google Scholar 

  • Hu X, Li G, Yu JC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26:3031–3039.

    Google Scholar 

  • Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  CAS  Google Scholar 

  • ICDD_JCPDS-International Centre for Diffraction Data (2000) PCPDFWIN v. 2.1

  • Ida T, Shimazaki S, Hibini H, Toraya H (2003) Diffraction peak profiles from spherical crystallites with lognormal size distribution. J Appl Crystallogr 36:1107

    Article  CAS  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    CAS  Google Scholar 

  • Khanna PK, Singh N (2007) Light emitting CdS quantum dots in PMMA: synthesis and optical studies. J Lumin 127:474–482

    Article  CAS  Google Scholar 

  • Klimov VI, Ivanov SA, Nanda J, Acherman M, Bezel I, McGuire JA, Piryatinski A (2007) Single-exciton optical gain in semiconductor nanocrystals. Nature 447:441–446

    Article  CAS  Google Scholar 

  • Landolt-Boernstein (2004) Semiconductors quantum structures, Group III, Vol 34 Sub-volume C, Optical Properties Part 2—Sec. 5.5.13. Springer, Berlin

  • Lee C-W, Renaud C, Hsu C-H, Nguyen T-P (2008) Traps and performance of MEH-PPV/CdSe(ZnS) nanocomposite-based organic light-emitting diodes. Nanotechnology 19:455202

    Article  Google Scholar 

  • Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nanostructured hybrid polymer–inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett 10:1253–1258

    Article  CAS  Google Scholar 

  • Menon VM, Luberto M, Valappi NV, Chatterjee S (2008) Lasing from InGaP quantum dots in a spin-coated flexible microcavity. Opt Express 16:19535–19540

    Article  CAS  Google Scholar 

  • Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N, Tanemura S (2003) Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering. Appl Surf Sci 212–213:255–263

    Article  Google Scholar 

  • Nozik AJ (2003), Advanced concepts for photovoltaic cells. NCPV and Solar Program Review Meeting pp 422–426

  • Parlog C, Gartner M, Osiceanu P, Ianculescu A, Teodorescu V, Moise F (1996) Optical and microstructural properties of TiO2(Ni2+) thin films. Ceram Int 22:95–99

    Article  CAS  Google Scholar 

  • Petrella A, Tamborra M, Cosma P, Curri ML, Striccoli M, Comparelli T, Agostiano A (2008) Photocurrent generation in a CdS nanocrystals/poly[2-methoxy-5-(2′-ethyl-exyloxy)phenylene vinylene] electrochemical cell. Thin Solid Films 516:5010–5015

    Article  CAS  Google Scholar 

  • Rees WS Jr, Krauter G (1996) Preparation and characterization of several group 12 element (Zn, Cd)-bis (thiolate) complexes and evaluation of their potential as precursors for 12–16 semiconducting materials. J Mater Res 11(12):3005–3016

    Article  CAS  Google Scholar 

  • Resta V, Laera AM, Piscopiello E, Capodieci L, Ferrara MC, Tapfer L (2010a) Synthesis of CdS/TiO2 nanocomposites by using cadmium thiolates derivatives as unimolecular precursors. Phys Status Solidi A 207:1631–1635

    Article  CAS  Google Scholar 

  • Resta V, Laera AM, Piscopiello E, Schioppa M, Tapfer L (2010b) Highly efficient precursors for direct synthesis of tailored CdS NCs in organic polymers. J Phys Chem C 114:17311–17317

    Google Scholar 

  • Rogach AL, Kornowski A, Gao M, Eychmueller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103:3065–3069

    Article  CAS  Google Scholar 

  • Sancho-Parramon J, Ferré-Borrull J, Bosch S, Ferrara MC (2003) Use of information on the manufacture of samples for the optical characterization of multilayers through a global optimization. Appl Optics 42:1325–1329

    Article  Google Scholar 

  • Schmidt HM, Weller H (1986) Quantum size effects in semiconductor crystallites: calculation of the energy spectrum for the confined exciton. Chem Phys Lett 129:615–618

    Article  CAS  Google Scholar 

  • Sharma SN, Kumar U, Vats T, Arora M, Singh VN, Mehta BR, Jain K, Kakkar R, Narula AK (2010) Hybrid organic-inorganic (MEH-PPV/P3HT:CdSe) nanocomposites: linking film morphology to photostability. Eur Phys J Appl Phys 50:20602–1–7

    Article  Google Scholar 

  • Shim H-K, Jin J-I (2002) Light-emitting characteristics of conjugated polymers. Adv Polym Sci 158:193–243

    Article  CAS  Google Scholar 

  • Simpson JR, Drew HD, Shinde SR, Chouhary RJ, Ogale SB, Venkatesan T (2004) Optical band-edge shift of anatase Ti1-x Co x O2-δ . Phys Rev B 69:193205–1–4

    Article  Google Scholar 

  • Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties and band gap engineering. Acc Chem Res 43:190–200

    Article  CAS  Google Scholar 

  • Sun B, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3:961–963

    Article  CAS  Google Scholar 

  • Suryanarayana C, Grant Norton M (1998) X-ray diffraction: a practical approach, part II. Springer Verlag, New York, pp 97–105

    Google Scholar 

  • Tan F, Qu S, Zeng X, Zhang C, Shi M, Wang Z, Jin L, Bi Y, Cao J, Wang Z, Hou Y, Teng F, Feng Z (2010) Photovoltaic effect of tin disulfide with nanocrystalline/amorphous blended phases. Solid State Commun 150:58–61

    Article  CAS  Google Scholar 

  • Trindade Y, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858

    Article  CAS  Google Scholar 

  • Wang Y, Herron N (1998) Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites. J Phys Chem 92:4988–4994

    Article  Google Scholar 

  • Warren BE (1990) X-ray diffraction. Dover Publications, New York

    Google Scholar 

  • Xi L, Tan WXW, Chua KS, Boothroyd C, Lam YM (2009) Synthesis of monodispersed CdS nanowires and their photovoltaic applications. Thin Solid Films 517:6430–6434

    Article  CAS  Google Scholar 

  • Yang CC, Li S (2008) Size, dimensionality, and constituent stoichiometry dependence of bandgap energies in semiconductor quantum dots and wires. J Phys Chem C 112:2851–2856

    Article  CAS  Google Scholar 

  • Yoffe AD (2004) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 51:799–890

    Article  Google Scholar 

  • Yun D, Feng W, Wu H, Yoshino K (2009) Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization. Solar Energ Mater Sol C 93:1208–1213

    Article  CAS  Google Scholar 

  • Zhuang Z, Lu X, Peng O, Li Y (2010) Direct synthesis of water-soluble ultrathin CdS nanorods and reversible tuning of the solubility by alkalinity. J Am Chem Soc 132:1819–1821

    Article  CAS  Google Scholar 

  • Zorn M, Bae WK, Kwak J, Lee H, Lee C, Zentel R, Char K (2009) Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light emitting devices. ACS Nano 3:1063–1068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L. Capodieci, A. Cappello, S. Mazzarelli, T. Nocco, M. Palmisano and E. Pesce for their valuable technical support. Part of this work is supported by the Regione Puglia (Bari, Italy)—Project PONAMAT PS_016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Resta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laera, A.M., Resta, V., Ferrara, M.C. et al. Synthesis of hybrid organic–inorganic nanocomposite materials based on CdS nanocrystals for energy conversion applications. J Nanopart Res 13, 5705–5717 (2011). https://doi.org/10.1007/s11051-011-0304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0304-4

Keywords

Navigation