Skip to main content

Advertisement

Log in

One-pot synthesis of Cd1−x In x Te semiconductor as a sensitizer on TiO2 mesoporous for potential solar cell devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrated the synthesis of a new ternary semiconductor nanoparticle Cd1−x In x Te, as a sensitizer for solar cell devices via a one-pot mixed precursor solution. The Cd1−x In x Te nanoparticles (NPs) were prepared using the chemical bath deposition process and coated onto a TiO2 photoelectrode. A tetragonal structure of Cd1−x In x Te NPs was constituted on the TiO2 photoelectrode with a diameter range ∼25–30 nm, and the atomic percentages of the chemical elements showed that the structure could be Cd0.1In0.9Te incorporated with the CdIn2Te4 structure. When the dipping cycle increased, the energy gaps became narrower from 1.2 to 0.6 eV due to the increasing amount and the larger size of nanoparticles. The photovoltaic properties of various cycles were investigated, and the best power conversion efficiency (η) of 0.49 % under full 1 sun illumination (100 mW/cm2, AM 1.5G) was obtained for the seven-cycle-Cd1−x In x Te NPs with a current density (J sc) of 2.64 mA/cm2, an open-circuit voltage (V oc) of 638 mV, and a fill factor (FF) of 0.29. The efficiency of this material can be further improved for higher potential solar cell devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338–5346 (1994)

    Article  Google Scholar 

  2. M. Darbandi, G. Urban, M. Krüger, J. Colloid, Interface Sci. 351, 30–34 (2010)

    Article  Google Scholar 

  3. R.D. Shaller, V.I. Klimov, Phys. Rev. Lett. 92, 186601-1-4 (2004)

    ADS  Google Scholar 

  4. I. Moreels, K. Lambert, D.D. Muynck, F.V. Anhaecke, D. Poelman, J.C. Martins, G. Allan, Z. Hens, Chem. Mater. 19, 6101–6106 (2007)

    Article  Google Scholar 

  5. J. Tian, G. Cao, Nano Rev. 4, 22578–22585 (2013)

    Google Scholar 

  6. M.H. Yeh, L.Y. Lin, C.P. Lee, C.Y. Chou, K.W. Tsai, J.T. Lin, K.C. Ho, J. Power Sources 237, 141–148 (2013)

    Article  Google Scholar 

  7. T.L. Luke, A. Wolcott, L.P. Xu, S. Chen, Z. Wen, J. Li, E.D.L. Rosa, J.Z. Zhang, J. Phys. Chem. C 112, 1282–1292 (2008)

    Article  Google Scholar 

  8. G.I. Koleilat, L. Levina, H. Shukla, S.H. Myrskog, S. Hinds, A.G. Pattantyus-Abraham, E.H. Sargent, ACS Nano 2, 833–840 (2008)

    Article  Google Scholar 

  9. D.B Salunkhe, S.S Gargote, D.P Dubal, W.B Kimc, B.R Sankapal, Chem. Phys. Lett. 554, 150–154 (2012)

    Article  ADS  Google Scholar 

  10. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Nano Lett. 8, 2551–2555 (2008)

    Article  ADS  Google Scholar 

  11. A. Tubtimtae, T. Hongto, K. Hongsith, S. Choopun, Superlattice Microst. 66, 96–104 (2014)

    Article  ADS  Google Scholar 

  12. J.C. Sarker, R. Vasan, Y.F. Makableh, S. Lee, A.I. Nusir, M.O. Manasreh, Sol. Energy Mater. Sol. C 127, 58–62 (2014)

    Article  Google Scholar 

  13. National Center for Photovoltaics, Best Research-cell Efficiencies Chart; National Renewable Energy Laboratory Boulder (Colorado, USA, 2014) http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed March 29, 2015

  14. M.C. Hanna, A.J. Nozik, J. Appl. Phys. 100, 074510-1-8 (2006)

    Article  ADS  Google Scholar 

  15. P.V. Kamat, J. Phys. Chem. C 112, 18737–18753 (2008)

    Article  Google Scholar 

  16. T. Zdanowicz, T. Rodziewicz, M.Z. Waclawek, Sol. Energy Mater. Sol. C 87, 757–769 (2005)

    Article  Google Scholar 

  17. S.I. Boldish, W.B. White, Am. Mineral. 83, 865–871 (1998)

    Google Scholar 

  18. P.C. Huang, W.C. Yang, M.W. Lee, J. Phys. Chem. C 117, 18308–18314 (2013)

    Article  Google Scholar 

  19. W.C. Yang, M.W. Lee, J. Electrochem. Soc. 161, H92–H96 (2014)

    Article  Google Scholar 

  20. J.J. Liu, M.W. Lee, Electrochim. Acta 119, 59–63 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  21. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, ACS Nano 7, 5215–5222 (2013)

    Article  Google Scholar 

  22. M.F. Cabrera, J. Dong, O.F. Sankey, Thin Solid Films 373, 19–22 (2000)

    Article  Google Scholar 

  23. A.N. Georgobiani, S.I. Radautsan, I.M. Tiginyanu, Sov. Phys. Semicond. 19, 121–132 (1985)

    Google Scholar 

  24. S. Ozaki, Y. Take, S. Adachi, J. Mater Sci. Mater. Electron 18, S347–S350 (2007)

    Article  Google Scholar 

  25. A. Tubtimtae, K. Arthayakul, B. Teekwang, K. Hongsith, S. Choopun, J. Colloid Interface Sci. 405, 78–84 (2013)

    Article  Google Scholar 

  26. A. Tubtimtae, K.L. Wu, H.Y. Tung, M.W. Lee, G.J. Wang, Electrochem. Commun. 12, 1158–1160 (2010)

    Article  Google Scholar 

  27. P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey, Q. Qiao, Energy Environ. Sci. 2, 426–429 (2009)

    Article  Google Scholar 

  28. A.Y. Shenouda, M.M. Rashad, L. Chow, J. Alloy Compd. 563, 39–43 (2013)

    Article  Google Scholar 

  29. G.P. Gorgut, A.O. Fedorchuk, I.V. Kityk, V.P. Sachanyuk, I.D. Olekseyuk, O.V. Parasyuk, J. Cryst. Growth 324, 212–216 (2011)

    Article  ADS  Google Scholar 

  30. N. Petragnani, H.A. Stefani, Tellurium in Organic Synthesis: Second, Updated and Enlarged Edition, 1st edn. (Elsevier, London, 2007), p. 1

    Book  Google Scholar 

  31. D.A. Brobst, W.P. Pratt, United State Mineral Resources : Geological Survey Professional Paper 820 (United State Government Printing Office, Washington, 1973), p. 106

    Google Scholar 

  32. G.D. Guseinov, G.B. Abdullayev, E.M. Kerimova, R.S. Gamidov, G.G. Guseinov, Mater. Res. Bull. 4, 807–816 (1969)

    Article  Google Scholar 

  33. M. Meléndez Lira, M. Zapata-Torres, R. Castro-Rodriguez, Superficies y Vacío 12, 16–19 (2001)

  34. A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 2, 154–160 (2012)

    Article  ADS  Google Scholar 

  35. J. Tauc, A. Menth, D.L. Wood, Phys. Rev. Lett. 25, 749–752 (1970)

    Article  ADS  Google Scholar 

  36. D.E. Lee, J.Y. Wu, W.Z. Lin, M.W. Lee, J. Electrochem. Soc. 161, H880–H884 (2014)

    Article  Google Scholar 

  37. P. Wachter, C. Schreiner, M. Zistler, D. Gerhard, P. Wasserscheid, H.J. Gores, Microchim. Acta 160, 125–133 (2008)

    Article  Google Scholar 

  38. B.E. Conway, R.E. White, J.O. Bockris, Modern Aspects of Electrochemistry, 2nd edn. (Academic Press, New York, 1986)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Kasetsart University Research and Development Institute (KURDI) for financial support (Grant No. 142.57). Also, we would like to thank the Center for Alternative Energy (CAE), Faculty of Science, Mahidol University, for providing access to instruments and Ms. Pornpimol Sathongluan for the help of IV measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auttasit Tubtimtae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singsa-ngah, M., Tubtimtae, A. One-pot synthesis of Cd1−x In x Te semiconductor as a sensitizer on TiO2 mesoporous for potential solar cell devices. Appl. Phys. A 120, 757–764 (2015). https://doi.org/10.1007/s00339-015-9253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9253-6

Keywords

Navigation